
Advanced Signal, Image
and Surface Processing

Gabriel Peyré
Ceremade, Université Paris-Dauphine

gabriel.peyre@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~peyre/numerical-tour/

January 14, 2010

2

This book details advanced signal, image and surface processing methods. The focus in on the
use of sparsity and variational methods to solve difficult problems such as denoising, compression,
super-resolution and compressive sensing. The theoritical exposition is kept as simple as possible
and the emphasis is put on numerical schemes and practical experimentation using Matlab.

The main reference to get a more detailed exposition of signal and image processing methods is
the book of Mallat [20]. It covers all the theoritical details not covered in this book, and should be
used as a reference textbook. Another reference for wavelet analysis is the book of Daubechies [10].
Other references for signal and image processing include [33, 30].

The homepage page for the course is

http://www.ceremade.dauphine.fr/~peyre/numerical-tour/

You can retrieve from this page additional information such as slides. A set of Matlab numerical
tours allows one to experiment and reproduce the results of these notes.

Contents

1 Signal and Image Decomposition in Orthogonal Bases 5
1.1 Analog Signals . 5
1.2 Discrete Signals . 6

1.2.1 Acquisition and Sampling . 6
1.2.2 Linear Translation Invariant Sampler . 6

1.3 Orthogonal Decompositions . 7
1.3.1 Continuous Ortho-bases . 7
1.3.2 Discrete Ortho-bases . 8
1.3.3 2D Extensions of 1D Bases . 9

2 Fourier Processing 11
2.1 Fourier Transform on the Real Line . 12

2.1.1 Fourier Transform . 12
2.1.2 Fourier Transform and Continuous Filtering 12

2.2 Fourier Coefficients on the Interval . 12
2.2.1 Fourier Coefficients . 12
2.2.2 Fourier Coefficients and Continuous Filtering 13

2.3 Discrete Infinite Fourier Analysis . 14
2.3.1 Infinite Discrete Fourier Transform . 14
2.3.2 Convolution of Infinite Filters . 14

2.4 Discrete Finite Fourier Analysis . 14
2.4.1 Discrete Fourier Transform . 15
2.4.2 Fourier and Discrete Filtering . 15
2.4.3 Fast Fourier Transform . 15

2.5 2D Fourier Analysis . 15
2.6 Sampling . 16

2.6.1 Pointwise Sampling . 16
2.6.2 Continuous/Discrete Fourier Connexion . 16
2.6.3 Shannon Reconstruction . 17

3 Wavelet Processing 19
3.1 Approximation and Detail Spaces . 19

3.1.1 Approximation Spaces . 19
3.1.2 Detail Spaces . 21

3.2 1D Wavelet Processing . 22
3.2.1 Wavelet Coefficients . 22
3.2.2 Forward Wavelet Transform . 23
3.2.3 Inverse Wavelet Transform . 26

3.3 2D Wavelet Processing . 27
3.3.1 2D Multiresolutions . 28
3.3.2 Anisotropic 2D Wavelets . 28
3.3.3 Isotropic 2D Wavelets . 30

3.4 Wavelet Design . 33
3.4.1 Low-pass Filter Constraints . 34

3

4 CONTENTS

3.4.2 High-pass Filter Constraints . 35
3.4.3 Wavelet Design Constraints . 36
3.4.4 Daubechies Wavelets . 37

4 Approximation and Compression 39
4.1 Approximation . 39

4.1.1 Approximation in an Ortho-basis . 39
4.1.2 Linear Approximation . 39
4.1.3 Non-linear Approximation . 40

4.2 Signal and Image Modeling . 41
4.2.1 Uniformly Smooth Signals and Images . 41
4.2.2 Piecewise Regular Signals and Images . 43
4.2.3 Bounded Variation Signals and Images . 43
4.2.4 Cartoon Images . 43

4.3 Efficient approximation . 44
4.3.1 Decay of Approximation Error . 44
4.3.2 Comparison of Signals . 45
4.3.3 Comparison of Bases . 45

4.4 Transform Coding . 46
4.4.1 Coding . 46
4.4.2 De-coding . 47
4.4.3 Support Coding . 48
4.4.4 Entropic Coding . 49
4.4.5 JPEG-2000 . 50

4.5 Fourier Approximation of Smooth Functions . 52
4.5.1 1D Fourier Approximation . 53
4.5.2 Sobolev Signal Approximation . 54
4.5.3 Sobolev Images . 54

4.6 Wavelet Approximation of Piecewise Smooth Functions 54
4.6.1 Decay of Wavelet Coefficients . 55
4.6.2 1D Piecewise Smooth Approximation . 56
4.6.3 2D Piecewise Smooth Approximation . 58

4.7 Cartoon Images Approximation . 59
4.7.1 Wavelet Approximation of Cartoon Images 59
4.7.2 Finite Element Approximation . 59
4.7.3 Curvelets Approximation . 61

5 Denoising with Thresholding 65
5.1 Noise Modeling . 65

5.1.1 Noise in Images . 65
5.1.2 Image Formation . 65
5.1.3 Denoiser . 67

5.2 Linear Denoising using Filtering . 67
5.2.1 Translation Invariant Estimators . 67
5.2.2 Optimal Filter Selection . 68
5.2.3 Wiener Filter . 69

5.3 Non-linear Denoising using Thresholding . 70
5.3.1 Hard Thresholding . 70
5.3.2 Soft Thresholding . 71
5.3.3 Minimax Optimality of Thresholding . 72
5.3.4 Translation Invariant Thresholding Estimators 74
5.3.5 Exotic Thresholdings . 76
5.3.6 Block Thresholding . 78

5.4 Data-dependant Noises . 80
5.4.1 Poisson Noise . 80

5.5 Multiplicative Noise . 82

CONTENTS 5

6 Denoising with Variational Minimization 85
6.1 Sobolev and Total Variation Priors . 85

6.1.1 Continuous Priors . 85
6.1.2 Discrete Priors . 86

6.2 PDE and Energy Minimization . 88
6.2.1 General Flows . 88
6.2.2 Heat Flow . 88
6.2.3 Total Variation Flows . 90
6.2.4 PDE Flows for Denoising . 91

6.3 Sparsity Priors . 91
6.3.1 Ideal sparsity prior. 91
6.3.2 Convex relaxation . 93

6.4 Regularization for Denoising . 93
6.4.1 Regularization . 93
6.4.2 Sobolev Regularization . 94
6.4.3 TV Regularization . 95
6.4.4 Sparse Regularization and Thresholding . 97

7 Inverse problems 99
7.1 Inverse Problems Regularization . 99

7.1.1 Inverse Problem in Imaging . 99
7.1.2 Inverse Problem Regularization . 100
7.1.3 L2 regularization . 100
7.1.4 Sobolev Regularization . 101
7.1.5 Total Variation Regularization . 101
7.1.6 Sparse Regularization . 102
7.1.7 Proximal Algorithms for TV and Sparsity 102

7.2 Example of Inverse Problems . 104
7.2.1 Deconvolution . 104
7.2.2 Noiseless Inpainting . 106
7.2.3 Tomography Inversion . 108

8 Linear Mesh Processing 113
8.1 Surface Discretization with Triangulated Mesh . 113

8.1.1 Continuous Geometry of Surfaces . 113
8.1.2 Discretization of Surfaces with Triangulations 114

8.2 Linear Mesh Processing . 115
8.2.1 Functions on a Mesh . 115
8.2.2 Local Operators . 116
8.2.3 Approximating Integrals on a Mesh . 117
8.2.4 Example on a Regular Grid . 119
8.2.5 Gradients and Laplacians on Meshes . 120
8.2.6 Examples in 1D and 2D . 121
8.2.7 Example of a Parametric Surface . 122

8.3 Diffusion and Regularization on Surfaces . 122
8.3.1 Heat Diffusion . 122
8.3.2 Spectral Decomposition . 124
8.3.3 Spectral Theory on a Regular Grid . 126
8.3.4 Spectral Resolution of the Heat Diffusion 127
8.3.5 Quadratic Regularization . 127
8.3.6 Application to Mesh Compression . 128
8.3.7 Application to Mesh Parameterization . 129
8.3.8 Application to Mesh Flattening . 131

6 CONTENTS

9 Multiresolution Mesh Processing 133
9.1 Semi-regular Meshes . 133

9.1.1 Nested Multiscale Grids. 133
9.1.2 Semi-regular Triangulation. 134
9.1.3 Spherical Geometry Images . 135

9.2 Subdivision Curves . 136
9.3 Subdivision Surfaces . 137

9.3.1 Interpolation Operators . 138
9.3.2 Some Classical Subdivision Stencils . 138
9.3.3 Invariant Neighborhoods . 140
9.3.4 Convergence of Subdivisions . 141

9.4 Wavelets on Meshes . 143
9.4.1 Multiscale Biorthogonal Bases on Meshes 143
9.4.2 The Lifting Scheme . 143
9.4.3 Imposing vanishing moments. 145
9.4.4 Lifted Wavelets on Meshes . 146
9.4.5 Non-linear Mesh Compression . 147

Chapter 1

Signal and Image Decomposition
in Orthogonal Bases

This chapter introduces the concept of orthogonal decomposition. This is the most important
tool used in this book to perform signal and image processing. These decompositions can be defined
for both continuous or discrete signals.

1.1 Analog Signals

To develop numerical tools and analyze their performances, the mathematical modeling is
usually done over a continuous setting. An analog signal is a 1D function f0 ∈ L2([0, 1]) where
[0, 1] denotes the domain of acquisition, which might for instance be time. An analog image is a
2D function f0 ∈ L2([0, 1]2) where the unit square [0, 1]2 is the image domain.

Although these notes are focussed on the processing of sounds and natural images, most of the
methods extend to multi-dimensional datasets, which are higher dimensional mappings

f0 : [0, 1]d → [0, 1]s

where d is the dimensionality of the input space (d = 1 for sound and d = 2 for images) whereas
s is the dimensionality of the feature space. For instance, gray scale images corresponds to (d =
2, s = 1), videos to (d = 3, s = 1), color images to (d = 2, s = 3) where one has three channels
(R,G,B). One can even consider multi-spectral images where (d = 2, s � 3) that is made of a
large number of channels for different light wavelengths. Figures 1.1 and 1.2 show examples of such
data.

Figure 1.1: Examples of sounds (d = 1), image (d = 2) and videos (d = 3).

7

8 CHAPTER 1. SIGNAL AND IMAGE DECOMPOSITION IN ORTHOGONAL BASES

Figure 1.2: Example of color image s = 3 and multispectral image (s = 32).

1.2 Discrete Signals

1.2.1 Acquisition and Sampling
Signal acquisition is a low dimensional projection of the continuous signal performed by some

hardward device. This is for instance the case for a microphone that acquires 1D samples or a digital
camera that acquires 2D pixel samples. The sampling operation thus corresponds to mapping from
the set of continuous functions to a discrete finite dimensional vector with N entries.

f0 ∈ L2([0, 1]d) 7→ f ∈ CN

Figure 1.3: Image and sound discretization.

Figure 1.3 shows examples of discretized signals.

1.2.2 Linear Translation Invariant Sampler
A translation invariant sampler performs the acquisition as an inner product between the con-

tinuous signal and a constant impulse response h translated at the sample location

f [n] =
∫ S/2

−S/2
f0(x)h(n/N − x)dx = f0 ? h(n/N). (1.1)

The precise shape of h(x) depends on the sampling device, and is usually a smooth low pass
function that is maximal around x = 0. The size S of the sampler determines the precision of the
sampling device, and is usually of the order of 1/N to avoid blurring (if S is too large) or aliasing
(if S is too small).

Section 2.6 details how to reverse the sampling operation in the case where the function is
smooth.

1.3. ORTHOGONAL DECOMPOSITIONS 9

1.3 Orthogonal Decompositions

The main ingredient for the processing detailed in this book is the decomposition in a well
chosen orthogonal basis. If this decomposition is sparse, meaning that only few coefficients capture
most of the signal energy, then many processing problems such as compression, denoising or super-
resolution, are efficiently solved.

1.3.1 Continuous Ortho-bases

L2 measure of similarity. For analog signals f0 ∈ L2([0, 1]d), we consider the L2 inner product
that defines an Hilbert space structure

〈f0, g0〉 =
∫

[0,1]d
f0(x)ḡ0(x)dx.

This inner product defines a distance between signal

||f0 − g0||2 =
∫

[0,1]d
|f0 − g0|2dx = 〈f0 − g0, f0 − g0〉. (1.2)

This L2 norm is used to assess theoretically and numerically the performance of all processing
methods presented in this book. The relevance of this L2 measure of similarity is questionable,
since it does not take into account the visual quality that should be considered as the ultimate
judge of performance. Nevertheless, there is currently no better way to access automatically the
results of signal and image processing algorithms.

Ortho-bases. An orthonormal basis of L2([0, 1]d) is a collection of atoms {ψm}m∈Z that spans
L2([0, 1]d) and satisfies

〈ψm, ψm′〉 = δ[m−m′]. (1.3)

where δ is the discrete Dirac, that is defined as δ[i] = 0 if i 6= 0 and δ[0] = 1.
One should be careful that L2([0, 1]d) is an infinite dimensional Hilbert space, so that {ψm}m∈Z

is a basis if and only if its linear span is dense in L2([0, 1]d). It means that any analog signal
f0 ∈ L2([0, 1]d) can be approximated using the L2 norm (1.2) with a sequence of approximation
signals that are spanned by a finite number of vector from {ψm}m∈Z.

One can thus formally write the decomposition of a continuous signal in such an ortho-basis as

f0 =
∑
m∈Z

〈f0, ψm〉ψm. (1.4)

This decomposition satisfies an energy conservation

||f0||2 =
∫

[0,1]d
|f0(x)|2dx =

∑
m∈Z

|〈f0, ψm〉|2. (1.5)

Relevance of ortho-bases. The computation of the set of inner products {〈f0, ψm〉}m offers
an alternate representation that might be simpler than the spacial representation f0(t) is the basis
is well chosen to match the structure of the signal.

Processing is then usually performed in three stage
Computation of the inner products a[m] = 〈f0, ψm〉 for all m.
Modification of these inner product to obtain new coefficients ã[m] (for instance setting to zero
small coefficients, quantizing coefficients, . . .).
Reconstruction of a signal from these modified coefficients, that is the output of the algorithm

f̃0 =
∑
m∈Z

ã[m]ψm.

10 CHAPTER 1. SIGNAL AND IMAGE DECOMPOSITION IN ORTHOGONAL BASES

The orthogonality property of the basis is crucial since it allows a simple reconstruction formula
(1.4) from a given set of coefficients. It is also important because the energy conservation (1.5)
allows to compute the modification error directly over the coefficients

||f0 − f̃0||2 =
∑
m

|a[m]− ã[m]|2.

Fourier ortho-basis. The simplest, and probably most important, example of ortho-basis is the
Fourier basis. For 1D signals (d = 1), it is defined as

ψm(t) = em(t) = e2iπmt = cos(2πmt) + i sin(2πmt). (1.6)

The parameter m that indexes the atom is the frequency of its oscillations. One easily checks
orthogonality (1.3), and one can prove that any signal in L2([0, 1]) can be written in this basis as
(1.4).

Figure 1.4, left, shows examples of the real part of Fourier atoms.

Figure 1.4: Left: 1D Fourier (real part), right: wavelet bases.

One should be careful about the fact that Fourier atoms are 1-periodic, so that em(t+1) = em(t).
This implies that processing signal f(t) for t ∈ [0, 1] implicitly corresponds to performing a 1-
periodic extension of f(t) for all t ∈ R. For instance, even if f is continuous on [0, 1], it should be
treated as discontinuous if f(0) 6= f(1).

Chapter (2) details the use of this Fourier basis to perform linear signal and image processing.

Wavelet ortho-bases. Fourier atoms are global since they are supported on [0, 1]. This might
be an issue to process a signal that contains sharp localized features such as sound transition or
edges in images, see

Wavelet bases are composed of atoms that have a wide range of support size and location.
They are efficient to process pointwise singularities since they allow to zoom on the singularity and
reconstruct it with only a few atoms. More precisely, a 1D wavelet basis is obtained by dyadic
translation and dilation of a mother wavelet function ψ

ψm(t) = 2−j/2ψ(2−jt− n)

where m = (j, n), 2j being the scale and n indexing the position of the atom.
Chapter 3 details how to actually compute a proper wavelet function ψ so that the resulting

set of atoms {ψj,n}j,n is an orthogonal basis of L2([0, 1]).

1.3.2 Discrete Ortho-bases
Discrete signals are finite dimensional vector f ∈ CN where N is the number of samples and

where each f [n] is the value of the signal at a 1D or 2D location. For a 2D images f ∈ CN ' CN0×N0 ,
N = N0 ×N0, where N0 is the number of pixels along each direction.

1.3. ORTHOGONAL DECOMPOSITIONS 11

Discrete signals and images are processed using a discrete inner product that mimics the con-
tinuous L2 inner product

〈f, g〉 =
N−1∑
n=0

f [n]ḡ[n].

One thus defines a distance between discretized vectors as

||f − g||2 =
N−1∑
n=0

|f [n]− g[n]|2.

Exactly as in the continuous case, a discrete orthogonal basis {ψm}06m<N of CN , satisfies

〈ψm, ψm′〉 = δ[m−m′]. (1.7)

The decomposition of a signal in such an ortho-basis is written

f =
N−1∑
m=0

〈f, ψm〉ψm.

It satisfies a conservation of energy

||f ||2 =
N−1∑
n=0

|f [n]|2 =
N−1∑
m=0

|〈f, ψm〉|2

Computing the set of all inner product {〈f, ψm〉}06m<N is done in a brute force way in O(N2)
operations. This is not feasible for large datasets where N is of the order of millions. When
designing an ortho-basis, one should keep this limitation in mind and enforce some structure in the
basis elements so that the decomposition can be computed with fast algorithm. This is the case
for the Fourier and wavelet bases, that enjoy respectively O(N log(N)) and O(N) algorithms.

Discrete Fourier basis A discrete orthogonal Fourier basis is obtained by sampling the contin-
uous Fourier atoms defined in (1.6)

em[n] =
1√
N
e

2iπ
N mn =

1√
N
em(n/N).

One verifies that this formula defines an ortho-basis that satisfies (1.7).
The computation of the Fourier coefficients {〈f, en〉}m is performed in O(N log(N)) operations

with the Fast Fourier Transform (FFT) algorithm, that exploits recursion formula on the coefficients
in a divide-and-conqueer manner.

Discrete wavelet basis. Discrete wavelets do not have in general an explicit formula, and the
discrete atoms ψj,n are defined implicitely through a filtering cascade. The important point is that
the projection of a signal onto these atoms is computed in O(N) operations with the Fast Wavelet
Transform (FWT) algorithm.

1.3.3 2D Extensions of 1D Bases
An image f ∈ CN of N = N0 × N0 pixels is sampled on a regular grid. Given a discrete 1D

ortho-basis {ψm}N0−1
m=0 of CN0 , one can build a 2D ortho-basis of CN using tensor products of 1D

function,
ψm1,m2 [n1, n2] = ψm1 [n1]ψm2 [n2]

which defines a separable basis {ψm1,m2}
N0−1
m1,m2=0.

The 2D discrete Fourier basis is written

em1,m2 [n1, n2] =
1√
N
e

2iπ
N0

(m1n1+m2n2).

12 CHAPTER 1. SIGNAL AND IMAGE DECOMPOSITION IN ORTHOGONAL BASES

Figure 1.5: 2D Fourier orthogonal bases.

It corresponds to a discretized wave oscillating in the direction orthogonal to m = (m1,m2).
Figure 1.5 shows examples of the real part of 2D Fourier atoms.
Anisotropic wavelets are obtained by tensor products of 1D wavelets

ψj1,j2,n1,n2 [x1, x2] = ψj1,n1 [x1]ψj2,n2 [x2].

They correspond to atoms stretched along the horizontal and vertical directions.
Isotropic wavelets, are defined in the continuous case as

ψωj,n(x) = 2−jψω(2−jx− n)

where ω ∈ {H,V,D} indicates the horizontal/vertical/diagonal direction of the wavelets. They are
often used in image processing, since they have a square support not stretched along the axes. They
correspond to a non-separable basis, and require three mother wavelets {ψH , ψV , ψD}. Figure 1.6
shows examples of such atoms.

Figure 1.6: 2D isotropic wavelet orthogonal bases.

Chapter 2

Fourier Processing

Fourier transforms of various kinds are basic tools in almost every signal or image processing
method on translation invariant domains. Depending wether the domain is finite or infinite, or
wether the signal is continuous or discrete, one obtain four different notions of Fourier transforms

Infinite continuous domains: typically R.
Periodic continuous domains: typically [0, 1].
Infinite discrete domains: typically Z.
Periodic discrete domains: typically {0, . . . , N − 1}.

Bounded domains should be understood as periodic domain, for instance [0, 1] is treated as the torus
R/Z and {0, . . . , N − 1} is treated as the set Z/NZ of integer modulo N . Figure 2.1 shows these
four different kinds of domains, and the Fourier transform that inverts the roles of infinite/periodic
and continuous/discrete.

Discrete

Infinite Periodic

f [n], n ∈ Z f [n], 0 ! n < N

Periodization

Continuousf0(t), t ∈ R f0(t), t ∈ [0, 1]

f0(t) !→
∑

n f0(t + n)

Sa
m

pl
in

g

f̂0(ω) !→ {f̂0(k)}k

Discrete

Infinite

Periodic

Continuous

Sampling

f̂ [k], 0 ! k < N

f̂0(ω), ω ∈ R f̂0[k], k ∈ Z Fo
ur

ie
r

tr
an

sf
or

m
Is

om
et

ry
f
!→

f̂

f̂(ω), ω ∈ [0, 2π]

P
er

io
di

za
ti

on
f̂
(ω

)
=
∑ k

f̂ 0
(N

(ω
+

2k
π
))

f
[n

]=
f 0

(n
/N

)

Figure 2.1: The four different settings for Fourier analysis, and the sampling-periodization rela-
tionship.

Each Fourier transform gives a frequency view point on the signal, that is for instance adapted
to compute filtering with respect to translation over the domain. We detail in the following sections
these four settings.

These domains are extended to higher dimensions by considering tensor products of 1D domains.
For instance, for images, [0, 1]2 should be understood as the tensor product of [0, 1] with itself, so

13

14 CHAPTER 2. FOURIER PROCESSING

that Fourier transforms as easily computed for higher dimensional signals.

2.1 Fourier Transform on the Real Line
An analog signal f ∈ L2(R) is defined on the whole real line R.

2.1.1 Fourier Transform
The Fourier transform of an integrable function f ∈ L1(R) is defined as

f̂(ω) =
∫
f(t)e−iωtdt. (2.1)

This definition extends to finite energy functions f ∈ L2(R) by density.
In some sense, f(ω) is the inner product between f and the Fourier atom eω(t) = e−iωt,

although one should be careful that em is neither in L2(R) not in L1(R), and that one considers a
non-denombrable family of atoms indexed by ω ∈ R.

The Fourier mapping f 7→ f̂ is unitary, since one has the Plancherel formula

〈f, g〉 =
1
2π
〈f̂ , ĝ〉 and

∫
|f(t)|2dt =

1
2π

∫
|f̂(ω)|2dω,

where the inner products are computed on R.
Furthermore, it is easily inverted, if f̂ ∈ L1(R), using the Fourier inversion formula

f(t) =
1
2π

∫
f̂(ω)eiωtdω.

This formula shares some analogy with the reconstruction from an orthogonal basis (1.4), with the
replacement of

∑
by
∫

and considering a non-denombrable family of atoms.

2.1.2 Fourier Transform and Continuous Filtering
The convolution of two functions f, g ∈ L1(R) is defined as

f ? h(t) =
∫ +∞

−∞
h(u)f(t− u)du. (2.2)

The Fourier convolution theorem shows that this convolution is simple to compute over the Fourier
domain

g = f ? g =⇒ ĝ(ω) = f̂(ω)ĥ(ω)

2.2 Fourier Coefficients on the Interval
We now consider analog signals defined on a bounded domain f ∈ L2([0, 1]), which are equiva-

lently treated as 1-periodic signals such that f(t+ 1) = f(t).

2.2.1 Fourier Coefficients
A 1D Fourier atom of frequency m is defined as

ψm(t) = em(t) = e2iπmt (2.3)

where t ∈ [0, 1] with periodic boundary conditions, as already explained in (1.6). These atoms
form an orthogonal basis {em}m∈Z of L2([0, 1]).

The Fourier coefficients of a function f ∈ L2([0, 1]) are the inner products with the Fourier
atoms

f̂ [m] = 〈f, em〉 =
∫ 1

0

f(t)e−2iπmtdt. (2.4)

2.2. FOURIER COEFFICIENTS ON THE INTERVAL 15

We note that f̂ [m] is a complex number, and that if f is real valued, then one has the following
hermitian symmetry

f̂ [−m] = f̂ [m]∗.

2.2.2 Fourier Coefficients and Continuous Filtering
Filtering. The convolution of two functions f, g ∈ L1([0, 1]) with periodic boundary conditions
is defined as

f ? h(t) =
∫ 1

0

h(u)f(t− u)du

where t− u is computed modulo 1.
Smoothing is achieved by using a low pass filter h. A simple example is a convolution with a

box function
f ?

1
2a

1[−τ,τ](t) =
1
2τ

∫ τ

−τ
f(t+ u)du,

which computes a local averaging over an interval of size 2τ . Figure 2.2 shows this filtering process.

x− x+x 1
2

1
2

f

f

∗1[− 1
2 ,

1
2]

Figure 2.2: Signal filtering with a box filter (running average).

Filtering over Fourier domain. The Fourier basis diagonalizes convolution operators f 7→ f?h,
which is equivalent to the Fourier convolution theorem

g = f ? g =⇒ ĝ[m] = f̂ [m]ĥ[m] (2.5)

The low pass box filtering, makes use of the following filter,

h(t) =
1
2τ

1[−τ,τ](t).

Its Fourier coefficients are
ĥ[m] =

∫ τ

−τ
e−2iπmtdt =

sin(2πmτ)
2πmτ

.

A smoother filtering function is the Gaussian kernel

hσ(t) =
1

σ
√

2π
e−

t2

2σ2 .

Its Fourier coefficients are approximately

ĥσ[m] ' h1/σ(m)

so that increasing the filter width σ corresponds to setting close to zero more frequencies during
the filtering. Figure 2.3 shows the effect of increasing the width σ to smooth a noisy signal.

16 CHAPTER 2. FOURIER PROCESSING

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 2.3: Filtering an irregular signal with a Gaussian filter of increasing filter size σ.

2.3 Discrete Infinite Fourier Analysis

An infinite discrete signal is defined on an infinite discrete grid as {h[n]}n∈Z.

2.3.1 Infinite Discrete Fourier Transform

The Fourier transform a summable h ∈ `1(Z) is

∀ω ∈ [0, 2π], h(ω) =
∑
n∈Z

h[n]e−iωn. (2.6)

It can be extended to finite energy signals in `2(Z) by density. This defines a 2π periodic function.
This transform is in some sense dual to the Fourier coefficients (2.4) of a periodic function. Indeed,
h[m] are coefficients of the function ĥ at frequency m since

h[m] = 〈ĥ, em〉 where em(t) =
1
2π
eimt

where one should be careful about the fact that we use here non-normalized Fourier atoms on
[0, 2π], which is deferent from the setting defined in (2.3).

2.3.2 Convolution of Infinite Filters

The convolution of two summable signals f, g ∈ `1(Z) is defined as

f ? h[n] =
∑
m

f [n]h[m− n].

One thus has the following Fourier convolution theorem, that is equivalent to (2.5)

g = f ? h =⇒ ĝ(ω) = f̂(ω)ĥ(ω).

2.4 Discrete Finite Fourier Analysis

A sampled discrete signal is a finite dimensional vector f ∈ CN .

2.5. 2D FOURIER ANALYSIS 17

2.4.1 Discrete Fourier Transform
The discrete orthonormal Fourier basis is obtained by sampling the continuous Fourier basis{

em[n] =
1√
N

exp
(

2iπ
N
mn

)}
06m<N

The discrete Fourier Transform (DFT) computes the N inner products with the discrete Fourier
atoms

f̂ [m] =
√
N〈f, em〉 =

N−1∑
n=0

f [n]e−
2iπ
N mn, (2.7)

where em is traditionaly rescaled by
√
N , and thus f 7→ f̂ is not unitary.

The orthogonality of the atoms implies the following reconstruction formula

f [n] =
N−1∑
m=0

〈f, em〉em =
1
N

N−1∑
m=0

f̂ [m]e
2iπ
N mn

which corresponds to the inverse discrete Fourier transform.

2.4.2 Fourier and Discrete Filtering
The discrete periodic convolution of two signals f and h is defined as

g[n] = f ? h[n] =
N−1∑
p=0

f [p]h[n− p mod N]. (2.8)

Similarely to the continuous Fourier transform, the discrete transform diagonalizes translation in-
variant operators which are filtering f 7→ f ?h. This corresponds to the discrete Fourier convolution
theorem

g = f ? h =⇒ ĝ[m] = f̂ [m] · ĥ[m]. (2.9)

2.4.3 Fast Fourier Transform
The brute force implementation of formula (2.7) requires O(N2) operations. The Fourier atoms

exhibit symmetries which allows one to speed up the computations using the Fast Fourier Transform
algorithm (FFT) which only requires O(N log(N)).

Using the convolution formula (2.9), one can compute the convolution over the Fourier domain
as follow

f ? g = F−1(f̂ · ĝ),

where F−1 is the inverse Fourier transform and · is the component wise multiplication of vectors.
Since F and F−1 are computed in O(N log(N)) operations, to does f ? g. This is an important
saving if both f and h are supported over the whole domain {0, . . . , N − 1}, since implementing
(2.8) directly over the spacial domain would require O(N2) operations.

This complexity reduction had a huge impact in signal processing and numerical analysis, since
computing convolutions with long filter is a major bottleneck in intensive computing applications.

2.5 2D Fourier Analysis
The 2D discrete Fourier basis for an image of N = N0×N0 pixels is obtained by tensor product

of the 1D basis
em[n] =

1√
N
e

2iπ
N0

m1n1+
2iπ
N0

m2n2 = em1 [n1]em2 [n2]

The frequency is m = (m1,m2) ∈ {0, . . . , N0 − 1} × {0, . . . , N0 − 1}
The 2D Fourier atoms assume periodic boundary conditions, which corresponds to handling the

square [0, 1]2 as a torus, identifying left/right and top/bottom boundaries of the image. For images

18 CHAPTER 2. FOURIER PROCESSING

which do not wrap properly, 2D Fourier analysis creates large vertical and horizontal frequencies
and Fourier processing creates artifacts near the image boundaries.

The 2D Fast Fourier Transform computes

f̂ [m1,m2] =
√
N〈f, em1,m2〉

by applying the 1D FFT to each row and then each column of the image, thus requiringO(N log(N))
operations.

Figure 2.4, left, shows an example of such artificial artifacts, and how they are reduced by a
proper masking of the image so that it becomes continuous after periodization.

Figure 2.4: 2D Fourier analysis of a image (left), and attenuation of the periodicity artifact using
masking (right).

% Compute the Fourier transform.
F = fft2(f); n = size(f,1);
% Compute marsked Fourier transform.
t = linspace(−pi(),pi(),n);
h = (cos(t)+1)/2; h = h'*h;
F1 = fft2(f.*h);
% Compute Log of Fourier transforms.
L = fftshift(log(abs(F)+1e−1));
L1 = fftshift(log(abs(F1)+1e−1));
% display
clf; imageplot({L L1}, {'FFT' 'Masked FFT'});

Matlab code 1: 2D Fourier transform and masked Fourier transforms. Input: image f, output:
Fourier coefficients F, F1.

2.6 Sampling

2.6.1 Pointwise Sampling
If the signal f0 is smooth and the sampler impulse response h in (1.1) is localized around 0,

f [n] = f0 ? h(n/N) ≈ f0(n/N).

An idealized sampling is a pointwise evaluation, which can be formally written using a Dirac
distribution

f [n] = f0(n/N) = 〈f0, φn〉 where φn = δn/N

where f0 is a assumed to be smooth. In this section, we consider an infinite sampling, so that
{f [n]}n∈Z is an infinite sequence.

2.6.2 Continuous/Discrete Fourier Connexion
The idealized sampling operator realize a mapping from functions to infinite sequence

f0 ∈ L2(R) 7−→ f ∈ CZ.

2.6. SAMPLING 19

This mapping is equivalently expressed over the Fourier domain as a periodization using the Poisson
summation formula

f̂(ω) = N

+∞∑
k=−∞

f̂0(N(ω − 2kπ)), (2.10)

where f̂(ω) is the 2π-periodic discrete Fourier transform (2.6) and f̂0(ω) is the continuous Fourier
transform (2.1).

Figure 2.1 shows within a diagram this duality relationship between sampling and periodization.

2.6.3 Shannon Reconstruction
Shannon Theorem, applied in 1D to function in L2(R), states that if Supp(f̂) ⊂ [−Nπ,Nπ],

where f̂ is the continuous Fourier transform of f , then f is recovered from the sample f [i]. This
comes from the fact that under this conditions, the contribution f̂0(N(ω−2kπ)) in the periodization
(2.10) does not overlap.

Furthermore, the recovery from the sample is performed with a simple linear interpolation
formula

f(t) =
∑
i

f [i]h(t− i/N) where h(t) =
sin(πNt)
πNt

.

This formula extends to any dimension by tensor product.
The constraint Supp(f̂) ⊂ [−Nπ,Nπ] implies that f should be smooth unless N is very large,

see 2.5, left, for an image with a small Fourier support. Unfortunately, sounds and natural images
are not smooth since they contains sharp transition and edges, see Figure 2.5, right. A precise
sampling for such features requires a high number N of samples to avoid aliasing.

Figure 2.5: A smooth image (left) and a natural image (right).

Chapter ?? presents the compressive sensing, which is a promising avenue to perform sampling
below the Shannon limit for compressible signals.

20 CHAPTER 2. FOURIER PROCESSING

Chapter 3

Wavelet Processing

Wavelet bases in 1D are obtained by dyadic translations and scalings of a single mother
wavelet ψ {

ψj,n(t) =
1

2j/2
ψ

(
t− 2jn

2j

)}
j∈Z,n∈Z

. (3.1)

A wavelet atom ψj,n(t) is localized around the point 2jn and has a support size proportional to
the scale 2j .

Since one usually works with signals sampled on [0, 1], the scale index j is often restricted to
be negative for numerical computations.

3.1 Approximation and Detail Spaces

3.1.1 Approximation Spaces
Constructing a wavelet basis is not as straightforward as defining the Fourier basis. The usual

construction first defines approximation spaces, from which the wavelet basis is derived.

Multiresolution analysis. A multiresolution analysis is a set of nested spaces {Vj}j∈Z of L2(R)

L2(R) ⊂ . . . ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ . . . ⊂ {0}. (3.2)

The left and right inclusions should be understood as

Closure

⋃
j

Vj

 = L2(R) and
⋂
j

Vj = {0}.

These spaces are supposed to be obtained by dyadic dilations, and we thus impose that

f(t) ∈ Vj ⇐⇒ f(t/2) ∈ Vj+1. (3.3)

This corresponds to the intuitive notion of mutiresolution since the function f(t/2) is twice coarser
that the function f(t). These spaces should be invariant under dyadic translations

f(t) ∈ Vj ⇐⇒ ∀n ∈ Z, f(t+ n2j) ∈ Vj .

The last condition, that is important to derive the construction of a wavelet basis, is that there
exists a scaling function φ such that {φ(t− n)}n∈Z is an orthogonal Riesz basis of the space V0.

We note that if one has at its disposal a translation invariant Riesz basis (not orthogonal)
{θ(t − n)}n of V0, one can compute a translation invariant orthogonal basis {φ(t − n)}n∈Z by
Fourier orthogonalization

φ̂(ω) =
θ̂(ω)√∑

k θ̂(ω + 2kπ)
. (3.4)

21

22 CHAPTER 3. WAVELET PROCESSING

Scaling function orthobasis. The scaling function φ defines an orthogonal basis of all the
spaces Vj using dyadic dilations and translations

Vj = Span(φj,n)n∈Z where φj,n(t) =
1√
2j
φ

(
t− 2jn
2j , 13

)
(3.5)

φj,0 φj+1,2 φj−1,

Figure 3.1: Translation and scaling to generate approximation spaces.

Figure 3.1 illustrates the translation and scaling effect.
The best approximation at scale 2j (or resolution 2−j) of a signal f is obtained by linear

projection, that is easily defined using the scaling ortho-basis of Vj

PVj (f) =
∑
n

〈f, φj,n〉φj,n. (3.6)

Boundary conditions. For bounded domains f ∈ L2([0, 1]), one can use periodic boundary
conditions, [0, 1] ' R/Z, and use only j 6 0. In this case the translation is assumed to be performed
modulo 1, and all the theory carries over without modification. This however introduces periodic
boundary artifacts.

To remove these artifacts, one uses symmetric boundary conditions. This leads to non-translation
invariant bases, and is thus more difficult to implement and boundary wavelets should be modified.

Haar Approximation Spaces The Haar multiresolution is obtained by considering piecewise-
constant approximations

Vj =
{
f \ f constant on [2jn, 2j(n+ 1))

}
. (3.7)

The scaling function can be defined as θ = 1[0,1]. Figure 3.2, left, shows this function.

Figure 3.2: Haar scaling (left) and wavelet (right) functions.

The projection PVj (f) defined in (3.6) is the best piecewise constant approximation

PVj (f) =
∑
n

1
2j

1[n2j ,(n+1)2j)

∫ (n+1)2j

n2j

f(t)dt.

Figure 3.3 shows examples of such projections for a decreasing resolution.
This multiresolution generalizes to higher order spline approximations, although it is more

difficult to compute the scaling function φ, which requires to apply the orthogonalization (3.4) to
the cardinal spline.

3.1. APPROXIMATION AND DETAIL SPACES 23

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Signal f j = −8

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

j = −7 j = −6

Figure 3.3: 1D Haar multiresolution projection of a function.

3.1.2 Detail Spaces

To build an orthogonal basis of the whole space L2(R), one needs to consider the detail spaces
Wj , that are orthogonal complements of the approximation spaces

Vj−1 = Vj ⊕⊥Wj .

This leads to the following sequence of embedded spaces

The decomposition of the whole space into detail spaces is an orthogonal sum

L2(R) =
+∞⊕
j=−∞

Wj = Vj0
⊕
j6j0

Wj .

Since the space Vj are spanned by an orthogonal translation invariant basis (3.5), one could
hope that this is also the case for the detail spaces, that should be spanned by a wavelet function ψ

Wj = Span(ψj,n)n∈Z where ψj,n(t) =
1√
2j
ψ

(
t− 2jn

2j

)
where {ψj,n}n∈Z is an orthogonal basis of Wj . In the following we show that is indeed the case
and how ψ is defined using filtering.

The projection on details space is

PWj (f) =
∑
n

〈f, ψj,n〉ψj,n = PVj−1(f)− PVj (f).

Full and truncated wavelet bases. A full wavelet basis of L2(R) is defined by considering all
the detail spaces Wj {

ψj,n \ (j, n) ∈ Z2
}
.

One can also define a truncated basis

{ψj,n \ j 6 j0, n ∈ Z} ∪ {φj0,n \ n ∈ Z} .

When using periodic boundary condition, the truncation at scale j0 6 0 defines a wavelet basis of
L2(R/Z) {

ψj,n \ j 6 j0, 0 6 n 6 2−j
}
∪
{
φj0,n \ 0 6 n 6 2−j0

}
.

24 CHAPTER 3. WAVELET PROCESSING

Haar wavelets. For the Haar multiresolution (3.7), one has

Wj =

{
f \ ∀n ∈ Z, f constant on [2j+1n, 2j+1(n+ 1)) and

∫ (n+1)2j

n2j

f = 0

}
. (3.8)

A possible choice for a mother wavelet function is

ψ(t) =
1√
2

 1 for 0 6 t < 1/2,
−1 for 1/2 6 t < 1,
0 otherwise,

as shown on Figure 3.2, right.

0

0.2

0.4

0.6

0.8

1

PV−7f

0

0.2

0.4

0.6

0.8

1

−0.2

−0.1

0

0.1

0.2

PV−6 f PW−6f

0

0.2

0.4

0.6

0.8

1

−0.2

−0.1

0

0.1

0.2

PV−5f PW−5f

Figure 3.4: Projection on Haar approximation spaces (left) and detail spaces (right).

Figure 3.4 shows examples of projections on details spaces, and how they can be derived from
projection on approximation spaces.

3.2 1D Wavelet Processing

3.2.1 Wavelet Coefficients

Detail and scaling coefficients. As this is the case for the Fourier transform, a wavelet trans-
form of an analog signal f0 ∈ L2([0, 1]) computes the set of coefficients

∀ 0 6 n < 2−j , dj [n] = 〈f0, ψj,n〉,

using periodic boundary conditions. We note that since there exists a multitude of mother wavelet
functions ψ, there also exists many different wavelet transforms.

Figure 3.5 shows examples of wavelet coefficients. For each scale 2j , there are 2−j coefficients.
The scaling coefficients are defined as

∀ 0 6 n < 2−j , aj [n] = 〈f0, φj,n〉.

Sampling consistent with the scaling functions. A discrete signal f ∈ CN corresponds to
the sampling of an analog signal f0 ∈ L2([0, 1]) on an uniform grid {n2J}06n<N where 2−J = N .

3.2. 1D WAVELET PROCESSING 25

!!"#

!!

!$"#

$

$"#

!

!"#

Wavelet coefficients {dj [n]}j,n

0

0.2

0.4

0.6

0.8

1

!!"#

!!"$

!

!"$

!"#

Signal f d−7[n]

!!"#

!!"$

!

!"$

!"#

!!"#

!

!"#

d−6[n] d−5[n]

Figure 3.5: Wavelet coefficients. Top row: all the coefficients. Bottoms rows: zoom on the different
scales

To identify the discrete wavelet transform of f with the continuous transform of f0, we assume
a consistency of the sampling with the scaling function

∀ 0 6 n < N, f [n] = aJ [n] =
1

2J/2

∫
f0(t)φ(t/2J − n)dt = 〈f0, φJ,n〉 (3.9)

Under this hypothesis, the detail coefficients dj of f0 are computed from the discrete signal f using
a fast algorithm.

This hypothesis is questionable, since the sensor impulse response h in (1.1) is given by the hard-
ware, and is likely to differs from φ. It is possible to account for this imperfect match by modifying
the values of f [n] prior to computing the wavelet coefficients, but in practice, the approximation
f [n] ≈ 〈f0, φJ,n〉 is sufficient.

Discrete signals and discrete wavelets. The wavelet coefficients depend linearly on both the
continuous and the discrete signals, and can thus be written as

∀J < j 6 0, ∀ 0 6 n < 2−j , dj [n] = 〈f0, ψj,n〉 = 〈f, ψ̄j,n〉 (3.10)

where ψj,n are the continuous wavelet atoms (3.1) and ψ̄j,n ∈ CN are discrete wavelet vectors
defined implicitly using this relation. This defines a discrete wavelet basis of CN

{ψ̄j,n}J<j60, 06n<2−j ∪ {φ̄0,0} (3.11)

where by convention φ̄0,0 = 1/
√
N is the constant vector.

For large N , these discrete atoms resemble their continuous counterparts, but since they are
defined on a discrete grid, they cannot be generated by dilation of a single mother wavelet. They
however satisfy a translation relationship on the discrete grid

∀ 0 6 k < N, ψ̄j,n[k] = ψ̄j,0[k − 2jn].

3.2.2 Forward Wavelet Transform
For now we assume that the wavelet function ψ and scaling function φ are given, and we derive

a fast iterative algorihtm. This section shows how to apply this algorithm without knowing in
closed form these functions.

26 CHAPTER 3. WAVELET PROCESSING

Low-pass coefficients. The embedding and refinement relations (3.3) and (3.2) imply that
φ(t/2) ∈ V0. One can thus expand φ(t/2) into the orthogonal basis of scaling functions to obtain

1√
2
φ

(
t

2

)
=
∑
n∈Z

h[n]φ(t− n)

where the coefficients of the filter h ∈ CZ are defined as

h[n] =
1√
2
〈φ(t/2), φ(t− n)〉.

High-pass coefficients. One can also decompose ψ(t/2) into the scaling function orthogonal
basis to obtain

1√
2
ψ

(
t

2

)
=
∑
n∈Z

g[n]φ(t− n)

where the coefficients of the filter g ∈ CZ are defined as

g[n] =
1√
2
〈ψ(t/2), φ(t− n)〉.

Refinement relationship. Using the change of variable t→ t−2jp
2j−1 , one obtains

1√
2
φ

(
t− 2jp

2j

)
=
∑
n∈Z

h[n]φ
(

t

2j−1
− (n+ 2p)

)
.

Using the second change of variable n→ n− 2p, one obtains

φj,p =
∑
n∈Z

h[n− 2p]φj−1,n. (3.12)

One also has the following refinement relation for the wavelets

1√
2
ψ

(
t

2

)
=
∑
n∈Z

g[n]φ(t− n).

Similar change of variables lead to

ψj,p =
∑
n∈Z

g[n− 2p]φj−1,n. (3.13)

Subsampled filtering step. One step of the wavelet transform algorithm computes (aj , dj)
from aj−1.

Using (3.12) and (3.13), one has the following relationship for the recursive computation of the
coarse scale approximation coefficients

aj [p] =
∑
n∈Z

h[n− 2p]aj−1[n] = aj−1 ? h̃[2p], (3.14)

dj [p] =
∑
n∈Z

g[n− 2p]aj−1[n] = aj−1 ? g̃[2p], (3.15)

where x̃[n] = x[−n]. These relations correspond to low and high pass filterings followed by a
sub-sampling

aj+1 = (aj ? h̃) ↓ 2,
dj+1 = (aj ? g̃) ↓ 2,

where the downsampling operator is defined as

(a ↓ 2)[n] = a[2n].

Figure 3.6 shows two steps of application of these refinement relationships. The code 2 imple-
ments the decomposition steps (3.14) and (3.15)

3.2. 1D WAVELET PROCESSING 27

% Low/High pass filtering followed by sub−sampling.
a = subsampling(cconv(f,h));
d = subsampling(cconv(f,g));
% Up−sampling followed by filtering.
f1 = cconv(upsampling(a),reverse(h)) + cconv(upsampling(d),reverse(g));
% Check that we really recover the same signal.
disp(strcat((['Error |f−f1|/|f| = ' num2str(norm(f−f1)/norm(f))])));

Matlab code 2: Filtering followed by sub-sampling: forward and backward. Input: signal f,
outputs coarse and detail coefficients a, d.

Figure 3.6: Forward filter bank decomposition.

Fast wavelet transform algorithm. The fast wavelet transform (FWT) applies iteratively the
steps (3.14) and (3.15), starting from j = J where aJ = f is known. The FWT operates as follow:

Input: signal f ∈ CN .
Initialization: aJ = f .
For j = J, . . . , j0 − 1.

aj+1 = (aj ? h̃) ↓ 2
dj+1 = (aj ? g̃) ↓ 2

Output: the coefficients {dj}j06j<J ∪ {aj0}.
Figure 3.7 shows the process of extracting iteratively the wavelet coefficients. Figure 3.8 shows

an example of computation, where at each iteration, the coefficients of aj and dj are added to the
left of the output vector. The code 3 implements this forward transform.

Figure 3.7: Pyramid computation of the coefficients.

The computational complexity of the FWT applied to a vector of N entries is
0∑

j=− log2(N)

2jN(|h|+ |g|) = O(N × (|h|+ |g|))

operations. It thus has a linear complexity with respect to N , which is faster than the FFT
algorithm that has O(N log(N)) complexity. Furthermore, its complexity also increases with the
size of the filters.

28 CHAPTER 3. WAVELET PROCESSING

Jmax = log2(n)−1; Jmin = 0; fw = f;
for j=Jmax:−1:Jmin

Coarse = subsampling(cconv(fw(1:2^(j+1)),h));
Detail = subsampling(cconv(fw(1:2^(j+1)),g));
fw(1:2^(j+1)) = cat(1, Coarse, Detail);

end

Matlab code 3: FWT algorithm, the input is f and the output is fw that stores all wavelet
coefficients.

0

0.2

0.4

0.6

0.8

1

0

0.5

1

0

0.5

1

1.5

0

0.5

1

1.5

2

Figure 3.8: Wavelet decomposition algorithm.

Haar Refinement For the Haar wavelets, one has

φj,n =
1√
2
(φj−1,2n + φj−1,2n+1),

ψj,n =
1√
2
(φj−1,2n − φj−1,2n+1).

This corresponds to the filters

h = [. . . , 0, h[0] =
1√
2
,

1√
2
, 0, . . .],

g = [. . . , 0, h[0] =
1√
2
, − 1√

2
, 0, . . .].

The Haar wavelet transform algorithm thus processes by iterating averaging and differences:
Input: signal f ∈ CN .
Initialization: aJ = f .
For j = J, . . . , j0 − 1.

aj+1[n] =
1√
2
(aj−1[2n] + aj−1[2n+ 1]),

dj+1[n] =
1√
2
(aj−1[2n]− aj−1[2n+ 1]).

Output: the coefficients {dj}j06j<J ∪ {aj0}.

3.2.3 Inverse Wavelet Transform
A forward elementary step

aj−1 ∈ R21−j

7−→ (aj , dj) ∈ R2−j

× R2−j

is an orthogonal mapping
||aj−1||2 = ||aj ||2 + ||dj ||2.

The backward elementary step

(aj , dj) ∈ R2−j

× R2−j

7−→ aj−1 ∈ R21−j

3.3. 2D WAVELET PROCESSING 29

=⇒

Figure 3.9: Wavelet inversion in matrix format.

is thus the transposed of the forward mapping. This is shown using matrix notations in Figure 3.9.
The transpose of sub-sampling is the up-sampling operator, defined by

(a ↑ 2)[n] =
{
a[k] if n = 2k,
0 if n = 2k + 1.

The transpose of filtering by h̃ is filtering by the reverse filter h. One thus has

aj−1 = (aj ↑ 2) ? h+ (dj ↑ 2) ? g.

The inverse Fast wavelet transform iteratively applies this elementary step
Input: {dj}j06j<J ∪ {aj0}.
For j = j0, . . . , J + 1.

aj−1 = (aj ↑ 2) ? h+ (dj ↑ 2) ? g.

Output: f = aJ .
This process is shown using a block diagram in Figure 3.10, which is the inverse of the block
diagram 3.6. The code 4 implements this inverse transform.

Figure 3.10: Backward filterbank recomposition algorithm.

f1 = fw;
for j=Jmin:Jmax

Coarse = f1(1:2^j);
Detail = f1(2^j+1:2^(j+1));
Coarse = cconv(upsampling(Coarse,1),reverse(h),1);
Detail = cconv(upsampling(Detail,1),reverse(g),1);
f1(1:2^(j+1)) = Coarse + Detail;

end

Matlab code 4: Inverse FWT algorithm, the input is fw that stores all wavelet coefficients and
the output is f1.

3.3 2D Wavelet Processing
There is two ways to extends a 1D wavelet basis into a 2D basis. The simplest way, detailed in

Section 3.3.2, computes tensor products of wavelet functions. A more complicated way, detailed
in Section 3.3.3, makes use of three different 2D mother wavelet functions, which enables wavelet
atoms with a square support.

30 CHAPTER 3. WAVELET PROCESSING

3.3.1 2D Multiresolutions
Separable multiresolutions. A 2D separable multiresolution analysis of L2(R2) is obtained
from a 1D muliresolution {Vj}j of L2(R) as follow

Vj ⊗ Vj = {f(x1)g(x2) \ f ∈ Vj , g ∈ Vj} .

For each j ∈ Z, this tensor product approximation space is generated by tensor product of scaling
functions

Vj ⊗ Vj = Span{φCj,n}n∈Z2 .

where

φCj,n(x) =
1
2j
φC
(
x− 2jn

2j

)
and φC(x) = φ(x1)φ(x2).

This construction extends to multiresolutions of L2([0, 1]2) by restricting the indices to

j 6 0, and 0 6 n1, n2 < 2−j .

2D consistent discretization. An analog image f0 ∈ L2([0, 1]2) is sampled on a discrete grid
{(n1, n2)2J}N0−1

n=0 of N = N0 ×N0 pixels, where N0 = 2−J .
Similarly to the 1D setting (3.9), we assume a consistency between the sampling scheme and

the scaling function, such that for an image f ∈ CN of N pixels

∀ 0 6 n1, n2 < N0, f [n] = aJ [n] = 〈f0, φCJ,n〉. (3.16)

Wavelet coefficients of f0 can then be computed from the discrete signal f ∈ CN .

Haar 2D multiresolution. For the Haar multiresolution, one obtains 2D piecewise-constant
Haar approximation. A function of Vj⊗Vj is constant on squares of size 2j×2j . Figure 3.11 shows
an example of projection of an image onto these 2D Haar approximation spaces.

Figure 3.11: 2D Haar approximation.

3.3.2 Anisotropic 2D Wavelets
Anisotropic basis. A separable (anisotropic) wavelet basis is obtained from a mother wavelet
function ψ as follow

ψj1,j2,n1,n2(x) = ψj1,n1(x1)ψj2,n2(x2).

It corresponds to an orthogonal basis of L2(R2) or L2([0, 1]2) with periodic boundary conditions.

Anisotropic wavelet coefficients. Anisotropic wavelet coefficients of f0 ∈ L2([0, 1]2) are com-
puted from f ∈ CN as

∀J < j2, j2 6 0, ∀ 0 6 n1 < 2−j1 , ∀ 0 6 n2 < 2−j2 , 〈ψj1,j2,n1,n2 , f0〉 = 〈ψ̄j1,j2,n1,n2 , f〉 (3.17)

where ψ̄j1,j2,n1,n2 generates a 2D discrete anisotropic wavelet basis of CN , that is also a tensorial
basis

ψ̄j1,j2,n1,n2 [x] = ψ̄j1,n1 [x1]ψ̄j2,n2 [x2],

where ψ̄j1,n1 is a 1D discrete wavelet vector, defined in (3.10).

3.3. 2D WAVELET PROCESSING 31

Anisotropic wavelet transform. The anisotropic wavelet transform algorithm computes the
set of coefficients 〈ψj1,j2,n1,n2 , f0〉 defined in (3.17).

One has

〈ψ̄j1,j2,n1,n2 , f〉 = 〈ψ̄j2,n2 , fj1,n1〉 where fj1,n1 [x2] = 〈ψ̄j1,n1 , f [·, x2]〉[1D]

where 〈·, ·〉[1D] is a 1D inner product. The value of fj1,n1 [x2] for all j1, n1 is computed by applying
the fast 1D wavelet transform the column of f indexed by x2. The value of 〈ψ̄j1,j2,n1,n2 , f〉 for all
j2, n2 is computed by applying the fast 1D wavelet transform to fj1,n2 .

The fast anisotropic wavelet transform thus applies the fast 1D wavelet transform to each row
and then each column of the discrete image f (the role of rows and columns is interchangeable).
Its complexity is O(N) operations where N is number of pixels. Figure 3.12 shows this forward
transform. The inverse transform processes similarly by applying the 1D inverse transform to row
and then columns. Figure 3.13, left, shows a set of wavelet coefficients.

Image f Row transform Column transform.

Figure 3.12: Steps of the anisotropic wavelet transform.

The wavelet function ψj1,j2,n1,n2 as a support of size proportional to 2j1 × 2j2 , and can thus be
highly stretched along the horizontal and vertical axes. Approximation using such an anisotropic
wavelet basis leads to axis-aligned artifacts that are visually noticeable. An isotropic wavelet
decomposition, explained in Section 3.3.3, is thus preferred in practice.

Figure 3.13: Anisotropic (left) versus isotropic (right) wavelet coefficients.

32 CHAPTER 3. WAVELET PROCESSING

3.3.3 Isotropic 2D Wavelets
2D detail spaces. Introducing the wavelet orthogonal complements Wj leads to the following
decomposition

Vj−1 ⊗ Vj−1 = (Vj ⊕⊥Wj)⊗ (Vj ⊕⊥Wj)
= (Vj ⊗ Vj)⊕ (Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj).

In this decomposition, Vj ⊗ Vj is the coarse scale approximation, while one has the following
horizontal, vertical, and diagonal detail spaces

WH
j = Vj ⊗Wj , WV

j = Wj ⊗ Vj , and WD
j = Wj ⊗Wj .

Introducing the 2D wavelet detail space W (2)
j , one obtain the following decomposition

Vj−1 ⊗ Vj−1 = (Vj ⊗ Vj)⊕W
(2)
j where W

(2)
j = WH

j ⊕WV
j ⊕WD

j .

This leads to the following diagram of embedded spaces

Each of the three wavelet spaces is spanned with a wavelet

∀ω ∈ {V,H,D}, Wω
j = Span{ψωj,n1,n2

}n1,n2

where

∀ω ∈ {V,H,D}, ψωj,n1,n2
(x) =

1
2j
ψω
(
x1 − 2jn1

2j
,
x2 − 2jn2

2j

)
and where the three mother wavelets are

ψH(x) = ψ(x1)φ(x2), ψV (x) = φ(x1)ψ(x2), and ψD(x) = ψ(x1)ψ(x2).

Figure 3.14 displays an examples of these wavelets.

ψH ψV ψD Support

Figure 3.14: 2D wavelets and their approximative support (right).

Discrete 2D wavelet coefficients. We suppose that the analog image f0 ∈ L2([0, 1]2) is sam-
pled consistently according to (3.16). Discrete wavelet coefficients are defined as

∀ω ∈ {V,H,D}, ∀J < j 6 0, ∀ 0 6 n1, n2 < 2−j , dωj [n] = 〈f0, ψωj,n〉 = 〈f, ψ̄ωj,n〉.

Approximation coefficients are defined as

aj [n] = 〈f0, φCj,n〉.

This defines a discrete orthogonal wavelet basis of CN{
ψ̄ωj,n \ J < j 6 0, 0 6 n1, n2 < 2−j , ω ∈ {H,V,D}

}
∪ {φ̄0,0},

where φ̄0,0 = 1/
√
N is the constant vector. Figure 3.15 shows examples of wavelet coefficients, that

are packed in an image of N pixels. Figure 3.16 shows other examples of wavelet decompositions.

3.3. 2D WAVELET PROCESSING 33

Figure 3.15: 2D wavelet coefficients.

Figure 3.16: Examples of images (top row) and the corresponding wavelet coefficients (bottom row)
.

Forward 2D wavelet transform basic step. A basic step of the computation of the 2D wavelet
transform computes detail coefficients and a low pass residual from the fine scale coefficients

aj−1 7−→ (aj , dHj , d
V
j , d

D
j).

Similarly to the 1D setting, this mapping is orthogonal, and is computed using the 1D filtering and
sub-sampling formula (3.15) and (3.14).

One first applies 1D horizontal filtering and sub-sampling

ãj = (aj−1 ?
H h̃) ↓H 2

d̃j = (aj−1 ?
H h̃) ↓H 2,

where ?H is the horizontal convolution, that applies the 1D convolution to each column of a matrix

a ?H b[n1, n2] =
P−1∑
m1=0

a[n1 −m1, n2]b[m1]

34 CHAPTER 3. WAVELET PROCESSING

where a ∈ CP×P and b ∈ CP are matrix and vectors. The notation ↓H 2 accounts for sub-sampling
in the horizontal direction

(a ↓H 2)[n1, n2] = a[2n1, n2].

One then applies 1D vertical filtering and sub-sampling to ãj and d̃j to obtain

aj = (ãj ?V h̃) ↓V 2,
dVj = (ãj ?V g̃) ↓V 2,

dHj = (d̃j ?V h̃) ↓V 2,
dDj = (d̃j ?V g̃) ↓V 2,

where the vertical operators are defined similarly to horizontal operators but operating on rows.

Figure 3.17: Forward 2D filterbank step.

Coefficients aj Transform on rows Transform on columns

Figure 3.18: One step of the 2D wavelet transform algorithm.

These two forward steps are shown in block diagram in Figure 3.17. These steps can be applied
in place, so that the coefficients are stored in an image of N pixels, as shown in Figure 3.18. This
gives the traditional display of wavelet coefficients used in Figure 3.16.

Fast 2D wavelet transform. The 2D FWT algorithm iterates these steps through the scales:
Input: signal f ∈ CN .
Initialization: aJ = f .
For j = J, . . . , j0 − 1.

ãj = (aj−1 ?
H h̃) ↓H 2,

d̃j = (aj−1 ?
H h̃) ↓H 2,

aj = (ãj ?V h̃) ↓V 2,

dVj = (ãj ?V g̃) ↓V 2,
dHj = (d̃j ?V h̃) ↓V 2,
dDj = (d̃j ?V g̃) ↓V 2.

Output: the coefficients {dωj }j06j<J,ω ∪ {aj0}.
The code 5 implements this 2D FWT algorithm.

3.4. WAVELET DESIGN 35

Jmax = log2(n)−1; Jmin = 0;
MW = M;
for j=Jmax:−1:Jmin

A = MW(1:2^(j+1),1:2^(j+1));
for d=1:2

Coarse = subsampling(cconv(A,h,d),d);
Detail = subsampling(cconv(A,g,d),d);
A = cat3(d, Coarse, Detail);

end
MW(1:2^(j+1),1:2^(j+1)) = A;

end

Matlab code 5: 2D FWT algorithm, the input is M and the output is MW that stores all wavelet
coefficients.
Fast 2D inverse wavelet transform. The inverse transform undo the horizontal and vertical
filtering steps. The first step computes

ãj = (aj ?V h) ↑V 2 + (dVj ?
V g) ↑V 2,

d̃j = (dHj ?V h) ↑V 2 + (dDj ?V g) ↑V 2,

where the vertical up-sampling is

(a ↑V 2)[n1, n2] =
{
a[k, n2] if n1 = 2k,
0 if n = 2k + 1.

The second inverse step computes

aj−1 = (ãj ?H h) ↑H 2 + (d̃j ?H g) ↑H 2.

Figure 3.19 shows in block diagram this inverse filter banks, that is the inverse of the diagram 3.17.

Figure 3.19: Backward 2D filterbank step.

The inverse Fast wavelet transform iteratively applies these elementary steps
Input: {dωj }j06j<J,ω ∪ {aj0}.
For j = j0, . . . , J + 1.

ãj = (aj ?V h) ↑V 2 + (dVj ?
V g) ↑V 2,

d̃j = (dHj ?V h) ↑V 2 + (dDj ?V g) ↑V 2,

aj−1 = (ãj ?H h) ↑V 2 + (d̃j ?H g) ↑V 2.

Output: f = aJ .

3.4 Wavelet Design
To be able to compute the wavelet coefficients using the FWT algorithm, it remains to know

how to compute the scaling and wavelet functions. The FWT only makes use of the filters h and

36 CHAPTER 3. WAVELET PROCESSING

Jmax = log2(n)−1; Jmin = 0;
MW = M;
for j=Jmax:−1:Jmin

A = MW(1:2^(j+1),1:2^(j+1));
for d=1:2

Coarse = subsampling(cconv(A,h,d),d);
Detail = subsampling(cconv(A,g,d),d);
A = cat3(d, Coarse, Detail);

end
MW(1:2^(j+1),1:2^(j+1)) = A;

end

Matlab code 6: 2D inverse FWT algorithm, the input is MW that stores all wavelet coefficients
and the output is M1.
g, so instead of explicitly knowing the functions φ and ψ, one can only know these filters. Indeed,
most of the known wavelets do not have explicit formula, and are implicitly defined through the
cascade of the FWT algorithm.

This section shows what are the constraints h and g should satisfy, and gives practical exam-
ples. Furthermore, it shows that the knowledge of h determines g under the constraint of having
quadrature filters, which is the most usual choice for wavelet analysis.

3.4.1 Low-pass Filter Constraints
Condition (C1). The refinement equation reads

1√
2
φ

(
t

2

)
=
∑
n∈Z

h[n]φ(t− n).

Over the Fourier domain, this equation reads

φ̂(2ω) =
1√
2
ĥ(ω)φ̂(ω)

where h(ω) is the 2π-periodic Fourier transform of infinite filters defined in (2.6), whereas φ̂(ω) is
the Fourier transform of function. One can show that |φ̂(0)| = 1, so that this relation implies the
first condition (C1)

(C1) ĥ[0] =
√

2.

Condition (C2). The orthogonality of φ(· − n)}n is rewritten using a continuous convolution
(2.2) as

∀n ∈ Z, φ ? φ̄(n) = 0

where φ̄(x) = φ(−x), and thus over the Fourier domain,∑
k

|φ̂(ω + 2kπ)|2 = 1.

This leads to condition (C2)

(C2) |ĥ(ω)|2 + |ĥ(ω + π)|2 = 2.

One can then prove that

{φj,n}n ortho-basis of Vj =⇒ (C1) + (C2).

Condition (C3). The converse is not true, and one needs to control the behavior of ĥ near 0.
For instance, if ĥ is C1 around 0 and if condition (C3)

(C3) inf
ω∈[−π/2,π/2]

|ĥ(ω)| > 0

holds then
(C1) + (C2) + (C3) =⇒ {φj,n}n ortho-basis of Vj .

3.4. WAVELET DESIGN 37

3.4.2 High-pass Filter Constraints

Condition (C4). The refinement equation for the wavelet reads

1√
2
ψ

(
t

2

)
=
∑
n∈Z

g[n]φ(t− n)

and thus over the Fourier domain

ψ̂(2ω) =
1√
2
ĝ(ω)φ̂(ω). (3.18)

The orthogonality of {ψ(· − n)}n is re-written

∀n ∈ Z, ψ ? ψ̄(n) = 0

and thus over the Fourier domain ∑
k

|ψ̂(ω + 2kπ)|2 = 1.

Using the Fourier domain refinement equation (3.18), this is equivalent to condition (C4)

(C4) |ĝ(ω)|2 + |ĝ(ω + π)|2 = 2.

Figure ?? shows the Fourier transform of two filters that satisfy this complementary condition.

Figure 3.20: Complementarity between a low pass and a high pass wavelet filters h and g that satisfy
condition (C4).

Condition (C5). The orthogonality between {ψ(· − n)}n and {φ(· − n)}n is written as

∀n ∈ Z, ψ ? φ̄(n) = 0

and hence over the Fourier domain∑
k

ψ̂(ω + 2kπ)φ̂∗(ω + 2kπ) = 0.

Using the Fourier domain refinement equation (3.18), this is equivalent to condition (C5)

(C5) ĝ(ω)ĥ(ω)∗ + ĝ(ω + π)ĥ(ω + π)∗ = 0.

One can then prove that under conditions (C1) + (C2) + (C3),

{ψj,n}n ortho-basis of Wj ⇐⇒ (C4) + (C5).

38 CHAPTER 3. WAVELET PROCESSING

Quadrature mirror filters. Quadrature mirror filters (QMF) impose the value of the high pass
filter as follow

g(ω) = e−iωĥ(ω + π)∗ ⇐⇒ g[n] = (−1)1−nh[1− n]. (3.19)

This choice of filter ensures that (C4) and (C5) are satisfied.
This choice is the natural choice to build wavelet filters, and is implicitly assumed in most

constructions.

3.4.3 Wavelet Design Constraints

There exists only one Fourier transform, but there is a large choice of different mother wavelet
functions ψ. They are characterized by

Size of the support.
Number of oscillations (the so called number p of vanishing moments).
Symmetry (only possible for non-orthogonal bases).
Smoothness (number of derivatives).

We now detail how these constraints are integrated together with conditions (C1)-(C5).

Vanishing moments. A wavelet ψ has p vanishing moments if

∀ k 6 p− 1,
∫ 1

0

ψ(x)xkdx = 0. (3.20)

This ensures that 〈f, ψj,n〉 is small if f is Cα, α < p on Supp(ψj,n).
This condition can be equivalently expressed over Fourier as

∀ k 6 p− 1,
dkĥ
dωk

(π) =
dkĝ
dωk

(0) = 0.

Support. Figure 3.21 shows the wavelet coefficients of a piecewise smooth signal. Coefficients of
large magnitude are clustered near the singularities, because the wavelet ψ has enough vanishing
moments.

To avoid that many wavelets create large coefficients near singularities, one should choose ψ with
a small support. This requirement is however contradictory with the vanishing moment property
(3.20). Indeed, one can prove that for an orthogonal wavelet basis with p vanishing moments

|Supp(ψ)| > 2p− 1,

where sup(a) is the largest closed interval outside of which the function f is zero.

Smoothness. In compression or denoising applications, an approximate signals is recovered from
a partial set IM of coefficients,

fM =
∑

(j,n)∈IM

〈f, ψj,n〉ψj,n.

This approximation fM has the same smoothness as ψ.
To avoid visually unpleasant artifacts, one should thus choose a smooth wavelet function ψ. This

is only for cosmetic reasons, since increasing smoothness does not leads to a better approximation.
However, for most wavelet family, increasing the number of vanishing moments also increases the
smoothness of the wavelets. This is for instance the case of the Daubechies family exposed in the
next section.

3.4. WAVELET DESIGN 39

!!"#

!!"$

!

!"$

!"#

!!"#

!!"$

!

!"$

!"#

!!"#

!

!"#

!!"#

!

!"#

0

0.2

0.4

0.6

0.8

1

Figure 3.21: Location of large wavelet coefficients.

3.4.4 Daubechies Wavelets
To build a wavelet ψ with a fixed number p of vanishing moments, one designs the filter h, and

use the quadrature mirror filter relation (3.19) to compute g. One thus look for h such that

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2, ĥ(0) =
√

2, and ∀ k < p,
dkĥ
dωk

(π) = 0.

This corresponds to algebraic relationships between the coefficients of h, and it turns out that they
can be solved explicitly using the Euclidean division algorithm for polynomials.

This leads to Daubechies wavelets with p vanishing moments, which are orthogonal wavelets
with a minimum support length of 2p− 1.

For p = 1, it leads to the Haar wavelet, with

h = [h[0] = 0.7071; 0.7071].

For p = 2, one obtains the celebrated Daubechies 4 filter

h = [0.4830;h[0] = 0.8365; 0.2241;−0.1294],

and for p = 3,

h = [0; 0.3327; 0.8069;h[0] = 0.4599;−0.1350;−0.0854; 0.0352].

Wavelet display. Figure 3.22 shows examples of Daubechies mother wavelet functions with an
increasing number of vanishing moments. These displays are obtained by computing in fact a
discrete wavelet ψ̄j,n defined in (3.11) for a very large number of samples N . This discrete wavelet
is computed by applying the inverse wavelet transform to the coefficients dj′ [n′] = δ[j−j′]δ[n−n′].

40 CHAPTER 3. WAVELET PROCESSING

Figure 3.22: Examples of Daubechies mother wavelets ψ with an increasing number p of vanishing
moments.

Chapter 4

Approximation and Compression

This chapter studies the theory of signal and image approximation, and gives an application to
lossy compression. This theoritical analysis is performed for continuous functions f ∈ L2([0, 1]d)
for d = 1, 2. This analysis is important to studies the performance of compression, denoising, and
super-resolution applications.

4.1 Approximation

4.1.1 Approximation in an Ortho-basis
We consider an orthogonal basis B = {ψm}m of L2([0, 1]d), with for instance d = 1 (signals) or

d = 2 (images). We recall that the decomposition of a signal in an orthonormal basis

f =
∑
m∈Z

〈f, ψm〉ψm

gives back the original signal and thus produces no error. Processing algorithms modify the coef-
ficients 〈f, ψm〉 and introduce some error.

The simplest processing computes an approximation by considering only a sub-set IM ⊂ Z of
M coefficients and performing the reconstruction from this subset

fM =
∑
m∈IM

〈f, ψm〉ψm, where M = |IM |.

The reconstructed signal fM is the orthogonal projection of f onto the space

VM = Span {ψm \ m ∈ IM} .

Since VM might depend on f , this projection f 7→ fM might be non-linear.
Since the basis is orthogonal, the approximation error is

||f − fM ||2 =
∑
m/∈IM

|〈f, ψm〉|2.

The important question is now to choose the set IM , which might depend on the signal f itself.

4.1.2 Linear Approximation
Linear approximation is obtained by fixing once for all IM , and thus using the same set of

coefficients for all f . The mapping f 7→ fM is a linear orthogonal projection on VM , and it satisfies

(f + g)M = fM + gM

For the Fourier basis, one usually selects the low-frequency atoms

IM = {−M/2 + 1, . . . ,M/2}.

41

42 CHAPTER 4. APPROXIMATION AND COMPRESSION

For a 1D wavelet basis, one usually selects the coarse wavelets

IM = {m = (j,m) \ j > j0}

where j0 is selected such that |IM | = M .

Original f Linear f `M Non-linear fnM

Figure 4.1: Linear versus non-linear wavelet approximation.

Figure 4.1, center, shows an example of such a linear approximation with wavelets. Linear
approximation tends to performs poorly near singularities, because they introduce some blurring.

4.1.3 Non-linear Approximation
A non-linear approximation is obtained by choosing IM depending on f . In particular, one

would like to choose IM to minimize the approximation error ||f−fM ||. Since the basis is orthogonal,
this is achieved by selecting the M largest coefficients in magnitude

IM = {M largest coefficients |〈f, ψm〉|}.

This can be equivalently obtained using a thresholding

IM = {m \ |〈f, ψm〉| > T}

where T depends on the number of coefficients M ,

M = # {m \ |〈f, ψm〉| > T} .

Computation of the threshold. There is a bĳective 1:1 mapping between T and M obtained
by ordering the coefficient magnitudes |〈f, ψm〉| by decaying order,

T = dM where {dm}N−1
m=0 = {|〈f, ψm〉|}N−1

0 and dm > dm+1. (4.1)

Figure 4.2 shows this mapping between M and T .
Note that the decay of the ordered coefficients is linked to the non-linear approximation decay,

since
||f − fM ||2 =

∑
m>M

d2
m

and

d2
M 6

2
M

M∑
m=M/2+1

d2
m 6

2
M

M∑
m>M/2

d2
m =

2
M
||f − fM/2||2.

This proves that
dm = O(m−α+1

2) ⇐⇒ ||f − fM ||2 = O(M−α). (4.2)

4.2. SIGNAL AND IMAGE MODELING 43

Figure 4.2: Decay of the ordered coefficients and determination of the threshold for non-linear
approxiation.

Hard thresholding. The non-linear approximation is re-written as

fM =
∑

|〈f, ψm〉|>T

〈f, ψm〉ψm =
∑
m

ST (〈f, ψm〉)ψm, (4.3)

where
ST (x) =

{
x if |x| > T
0 if |x| 6 T

(4.4)

is the hard thresholding, that is displayed in Figure 4.3.

Figure 4.3: Hard thresholding.

4.2 Signal and Image Modeling
A signal model is a constraint f ∈ Θ, where Θ ⊂ L2([0, 1]d) is a set of signals one is interested in.

Figure 4.4 shows different class of models for images, that we describe in the following paragraph.

4.2.1 Uniformly Smooth Signals and Images
Signals with derivatives. The simplest model is made of uniformly smooth signals, that have
bounded derivatives

Θ =
{
f ∈ L2([0, 1]d) \ ||f ||Cα 6 C

}
, (4.5)

where C > 0 is a fixed constant, and where in 1D

||f ||Cα = max
k6α

∣∣∣∣∣∣dkf
dtk

∣∣∣∣∣∣
∞
.

This extends to higher dimensional signals by considering partial derivatives along each direction.

44 CHAPTER 4. APPROXIMATION AND COMPRESSION

Regular Bounded variations Cartoon Natural

Figure 4.4: Examples of different kinds of image models.

Sobolev smooth signals and images. A smooth Cα signals in (4.5) has derivatives with
bounded energy, so that

dαf
dtα

(t) = f (α)(t) ∈ L2([0, 1]).

Using the fact that

f̂ (α)[m] = (2iπm)αf̂ [m]

where f̂ is the Fourier coefficient defined in (2.4), one defines a so-called Sobolev functional

||f ||2Sob(α) =
∑
m∈Z

|2πm|2α|〈f, em〉|2, (4.6)

that satisfies ||f ||Sob(α) = ||f (α)|| for smooth functions. This Sobolev functional is extended to
signals that have derivatives in the sense of distribution in L2([0, 1]).

This definition extends to distributions and signals f ∈ L2([0, 1]d) of arbitrary dimension d as

||f ||2Sob(α) =
∑
m∈Zd

(2π||m||)2α|〈f, em〉|2, (4.7)

The Cα-Sobolev model

Θ =
{
f ∈ `2([0, 1]d) \ max

k6α
||f ||2Sob(k) 6 C

}
(4.8)

generalizes the Cα smooth image model (4.5).
Figure 4.5 shows images with an increasing Sobolev norm for α = 2.

Figure 4.5: Images with increasing Sobolev norm.

4.2. SIGNAL AND IMAGE MODELING 45

4.2.2 Piecewise Regular Signals and Images

Piecewise smooth signals. Piecewise smooth signals in 1D are functions f ∈ L2([0, 1]) that
are Cα smooth outside a set of less than K pointwise discontinuities

Θ =
{
f ∈ L2([0, 1]) \ ∃ (ti)K−1

i=0 , ||f(ti,ti+1)||Cα 6 C
}

(4.9)

where f(ti,ti+1) is the restriction of f to the open interval (ti, ti+1).

Piecewise smooth images. Piecewise smooth images are 2D functions f ∈ L2([0, 1]2) that are
Cα regular outside a set of less than K curves that have a finite perimeter

Θ =
{
f ∈ L2([0, 1]2) \ ∃Γ = (γi)K−1

i=0 , ||f ||Cα(Γc) 6 C1 and |γi| 6 C2

}
(4.10)

where |γi| is the length of the curve γi and where ||f ||Cα(Γc) is the maximum norm of the derivatives
of f outside the set of curves Γ.

Segmentation methods such as the one proposed by Mumford and Shah [21] implicitly assume
such a piecewise smooth image modem.

4.2.3 Bounded Variation Signals and Images

Signals with edges are obtained by considering functions with bounded variations

Θ =
{
f ∈ L2(Rd) \ ||f ||∞ 6 C1 and ||f ||TV 6 C2

}
. (4.11)

For d = 1 and d = 2, this model generalizes the model of piecewise smooth signals (4.9) and images
(4.10).

The total variation of a smooth function is∫
||∇f(x)||dx

where

∇f(x) =
(
∂f

∂xi

)d−1

i=0

∈ Rd

is the gradient vector at x. The total variation is extended to discontinuous images, that might
for instance exhibit jumps across singular curves (the edges of the image). In particular, the total
variation of a piecewise smooth image is the sum of the lengths of its level sets

||f ||TV =
∫ ∞

−∞
|Lt(f)|dt < +∞ where Lt(f) = {x \ f(x) = t} , (4.12)

and where |Lt(f)| is the length of Lt(f). For a set Ω ⊂ R2 with finite perimeter |∂Ω|, then

||1Ω||TV = |∂Ω|.

The model of bounded variation was introduced in image processing by Rudin, Osher and Fatemi
[25].

4.2.4 Cartoon Images

The bounded variation image model (4.11) does not constrain the smoothness of the level set
curves Lt(f). Geometrical images have smooth contour curves, which should be taken into account
to improve the result of processing methods.

The model of Cα cartoon images is composed of 2D functions that are Cα regular outside a set
of less that K regular edge curves γi

Θ =
{
f ∈ L2([0, 1]2) \ ∃Γ = (γi)K−1

i=0 , ||f ||Cα(Γc) 6 C1 and ||γi||Cα 6 C2

}
(4.13)

46 CHAPTER 4. APPROXIMATION AND COMPRESSION

∫
|∇f |

Figure 4.6: Cartoon image with increasing total variation.

where each γi is a arc-length parameterization of the curve γi : [0, A] 7→ [0, 1]2. Figure 4.6 shows
cartoon images with increasing total variation ||f ||TV.

Typical images might also be slightly blurred by optical diffraction, so that one might consider
a blurred cartoon image model

Θ̃ =
{
f̃ = f ? h ∈ L2([0, 1]2) \ f ∈ Θ and h ∈ H

}
(4.14)

where Θ is the model of sharp (unblurred) images (4.13) and H is a set of constraints on the
blurring kernel, for instance h > 0 should be smooth, localized in space and frequency. This
unknown blurring makes difficult brute force approaches that detects the edges location Γ and
then process the regular parts in [0, 1]2\Γ.

Figure 4.7 shows examples of images in Θ and Θ̃.

Figure 4.7: Examples of cartoon images: sharp discontinuties (left and center) and smooth discon-
tinuities (right).

4.3 Efficient approximation

4.3.1 Decay of Approximation Error

To perform an efficient processing of signals or images in Θ, the goal is to design an orthogonal
basis such that the non-linear approximation error ||f − fM || decays as fast as possible to 0 when
M increases.

Polynomial error decay. This error decay measured using a power law

∀ f ∈ Θ, ∀M, ||f − fM ||2 6 CfM
−α (4.15)

4.3. EFFICIENT APPROXIMATION 47

where α is independent of f and should be as large as possible. The parameter α depends on the
basis and on Θ. It is a class-complexity parameter that describes the overall complexity of signals
in Θ with respect to the orthogonal basis one considers for approximation. The parameter Cf
depends on f and describes the complexity of the signal f within its class Θ.

Relevance for compression, denoising and inverse problems. Monitoring the decay of
approximation error is not only interesting from a mathematical point of view. Section 4.4 shows
that the compression error is close to the non-linear approximation error. Bases that are efficient
for approximation are thus also efficient for compression.

Chapter 5 shows that a similar conclusion holds for non-linear denoising with thresholding.
Efficient denoisers are obtained by performing a non-linear approximation of the noisy image in a
well chosen basis. The average denoising error with respect to a random noise is closely related to
the approximation error.

Chapter ?? shows that ill-posed inverse problems such as super-resolution of missing information
can be solved by taking advantage of the compressibility of the signal or the image in a well chosen
basis. A basis that is efficient for approximation of the high resolution signal is needed to recover
efficiently missing information. The performance of these schemes is difficult to analyze, and the
basis atoms must also be far enough from the kernel of the operator that removes information.

4.3.2 Comparison of Signals

For a fixed basis (for instance wavelets), the decay of ||f − fM || allows one to compare the
complexity of different images. Figure 4.9 shows that natural images with complicated geometric
structures and textures are more difficult to approximate using wavelets.

Since the approximation error often decays in a power-low fashion (4.15), the curves are dis-
played in a log-log plot, so that

log(||f − fM ||2) = cst− α log(M)

and hence one should expect an affine curve with slope −α. Due to discretization issue, this is only
the case for value of M � N , since the error quickly drops to zero for M ≈ N .

Smooth Cartoon Natural #1 Natural #2

Figure 4.8: Several different test images.

4.3.3 Comparison of Bases

For a given image f , one can compare different ortho-bases using the decay of ||f −fM ||. Figure
4.11 shows the efficiency of several bases to approximate a fixed natural image with contours
and textures. The Fourier basis described in Section 2.5 is highly innefficient because of periodic
boundary artifact and the global support of its atoms that fail to capture contours. The cosine
basis uses symmetric boundary conditions and thus removes the boundary artifacts, but it still
not able to resolve efficiently localized features. The local DCT basis corresponds to the union
of local cosine bases defined on small square patches. It is more efficient since its atoms have a
local support. However, it gives bad approximation for a small number M of kept coefficients,

48 CHAPTER 4. APPROXIMATION AND COMPRESSION

lo
g 1

0
(||

f
−

f M
||)

log10(M/N)

Figure 4.9: Comparison of approximation error decay in wavelets for different images shown in
Figure 4.8.

because of blocking artifacts. The isotropic wavelet basis detailed in Section 3.3.3 gives the best
approximation results because its is both composed of localized atoms and does not have a block
structure but rather a multiresolution structure.

Fourier Cosine Local DCT Wavelets
SNR=17.1dB SNR=17.5dB SNR=18.4dB SNR=19.3dB

Figure 4.10: Comparison of approximation errors for different bases using the same number M =
N/50 of coefficients.

4.4 Transform Coding

4.4.1 Coding
State of the art compression schemes correspond to transform coders, that code quantized

coefficients in an ortho-basis. They first computes the coefficients of the decomposition of the
signal into an well-chosen basis (for instance wavelets)

a[m] = 〈f, ψm〉 ∈ R.

Quantization corresponds to rounding the coefficients to an integer using a step size T > 0

q[m] = QT (a[m]) ∈ Z where QT (x) = sign(x)
⌊
|x|
T

⌋
.

We note that this quantizer has a twice larger zero bin, so that coefficients in [−T, T] are set to
zero.

4.4. TRANSFORM CODING 49

lo
g 1

0
(||

f
−

f M
||)

log10(M/N)

Figure 4.11: Comparison of approximation error decay for different bases.

This quantizer nonlinearity should be compared to the hard thresholding nonlinearity (4.4)
used to perform non-linear approximation. The quantizer not only set to zero small coefficients
that are smaller than T in magnitude, it also modifies larger coefficients by rounding, see Figure
4.12.

Figure 4.12: Thresholding and quantization non-linearity mappings.

The resulting integer values q[n] are stored into a binary file of length R, which corresponds to a
number of bits. Sections 4.4.3 and 4.4.4 detail two different approach to perform this transformation
from integer to bits. The goal is to reduce as much as possible the number R of bits.

4.4.2 De-coding

The decoder retrieves the quantized coefficients q[m] from the binary file, and dequantizes the
coefficients using

ã[m] = sign(q[m])
(
|q[m] +

1
2

)
T. (4.16)

This corresponds to retrieving the value from quantization at the center of quantization bins:

50 CHAPTER 4. APPROXIMATION AND COMPRESSION

ã[m]

−T T 2T−2T a[m]

The compressed-decompressed image using R bits is then reconstructed as

fR =
∑
m∈IT

ã[m]ψm =
∑
m∈IT

QT (〈f, ψm〉)ψm,

thus producing a decompression error ||f − fR||.
This decompression reconstruction (4.4.2) should be compared with the non-linear approxima-

tion formula (4.3). One necessarily has ||f − fM || 6 ||f − fR||, but in practice these two errors have
comparable magnitudes. Indeed, the de-quantization formula (4.16) implies that for |a[m]| > T ,

|a[m]− ã[m]| 6 T

2
.

One thus has

||f − fR||2 =
∑
m

(a[m]− ã[m])2 6
∑

|a[m]|<T

|a[m]|2 +
∑

|a[m]|>T

(
T

2

)2

(4.17)

6 ||f − fM ||2 +MT 2/4 (4.18)

where
M = # {m \ ã[m] 6= 0} .

4.4.3 Support Coding
To measure how large is the additional error term MT 2/4 in (4.17), one needs to choose a

method to store the quantized coefficients q[m] into a file.
For aggressive compression scenario, where R and M are small with respect to the size N of

the image, the support
IM = {m \ ã[m] 6= 0}

is highly sparse. It thus make sense to code first this support and then to code the actual value
q[m] 6= 0 for m ∈ IM .

Signals constraints. To derive a connexion between the non-linear approximation error ||f −
fM ||2 and the coding error ||f−fR||2, we make several assumptions on the signal f . We first suppose
that the coefficients 〈f, ψm〉 are highly sparse, by imposing a fast decay of the ordered coefficients
dm defined in (4.1)

dm ∼ m−α+1
2 , (4.19)

where um ∼ vm means that there exists two constant A,B > 0 such that Aum 6 vm 6 Bum. We
note that condition (4.19) implies in particular that ||f − fM || ∼M−α, so that the signals are well
approximated using the basis {ψm}m if α is large.

Furthermore, a practical compression algorithm is only capable of dealing with discrete signals
of size N . We thus considers that the algorithm has access to N inner products {〈f, ψm〉}06m<N

that are computed using a decomposition algorithm from a discretized signal or image of size
N . For instance, Section 3.2 details a discrete wavelet transform, and introduces a compatibility
condition (3.9) on the sampling operator for this inner product computation to be possible from
discrete data.

For the compression from the discrete signals to be the same as a compression of a continuous
signal, we impose that N is large enough so that

∀m > N, |〈f, ψm〉| < T

so that the coefficients not quantized to 0 are contained within the set {〈f, ψm〉}06m<N of the N
computed coefficients.

4.4. TRANSFORM CODING 51

The other hypothesis beyond (4.19) is that the sampling precision N is not too large, and in
particular, that there is a polynomial grows of N with respect to the number M of coefficients to
code

N ∼Mβ (4.20)
for some β > 0. For the wavelet and Fourier bases, and for all the classes of signals and images
detailed in Section 4.2, one can show that this is indeed the case, if one orders the basis elements
{ψm}m from low frequencies (or coarse scales) to high frequencies (or fine scales). This is because
in these bases, the coefficients 〈f, ψm〉 have a polynomial decay with m if f as some smoothness.
See Sections 4.5.2 and 4.6.1 for a proof of this decay for Sobolev and piecewise regular signals.

Support coding. Since the size of the support is |IM | = M , one can code the entries of IM as
being a set of size M within a larger set of N coefficients using a number of bits

Rind 6 log2

(
N

M

)
= O(M log2

(
N

M

)
) = O(M log2(M)) (4.21)

where
(
N
M

)
is the number of possible choices for M elements in a set of N elements, and where we

have used hypothesis (4.19) to derive the last equality.

Values coding. The quantized values satisfy q[m] ∈ {−A, . . . , A}, with

A 6
1
T

max
m

|〈f, ψm〉| = O(T−1),

so one can code them using a number of bits

Rval = O(M | log2(T)|) = O(M log2(M)) (4.22)

where we have used hypothesis (4.19) that implies | log2(T)| ∼ log2(M).

Total number of bits. Putting (4.21) and (4.22) together, the total number of bits for this
support coding approach is thus

R = Rind +Rval = O(M log2(M)).

Inverting this relationship proves that

M = O(R log2(R)). (4.23)

Rate/distortion error decay. Condition (4.19) implies that MT 2 ∼ M−α, so that putting
(4.17) and (4.23) together proves

||f − fR||2 = O(logα(R)R−α).

This shows the importance of the study of non-linear approximation, and in particular the design
of bases that are efficient for approximation of a given signal model Θ.

4.4.4 Entropic Coding
To further reduce the file size R (in bits), one can use an entropic coder to transform the integer

values q[m] into bits. Such coding scheme makes use of the statistical redundancy of the quantized
values, that have a large number of zero entries and very few large entries. The theory of coding
was formalized by Shannon [28].

Probabilistic modeling. The quantized coefficients q[m] ∈ {−A, . . . , A} are assumed to take
values in an alphabet of Q = 2A+ 1 elements. A coding scheme performs the transformation

{q[m]}m 7−→ {0, 1, 1, . . . , 0, 1} ∈ {0, 1}R.

To reduce the average value of R, one makes use of a statistical model, which assumes that the
q[m] are drawn independently at random from a known probability distribution

P(q[m] = i) = pi ∈ [0, 1].

52 CHAPTER 4. APPROXIMATION AND COMPRESSION

Original f Zoom Wavelet support Compressed fR

Figure 4.13: Image compression using wavelet support codding.

Huffman code. A Huffman code is a code with variable length, since it perform a mapping from
symbols to binary strings

q[m] = i ∈ {−A, . . . , A} 7−→ ci ∈ {0, 1}|ci|

where |ci| is the length of the binary code word ci, that should be larger if pi is small. A Huffman
tree algorithm is able to build a code such that

|ci| 6 dlog2(pi)e

so that
R 6 (E(p) + 1)N

where E is the entropy of the distribution, defined as

E(p) = −
∑
i

pi log2(pi).

Figure 4.14 shows different probability distribution. The entropy is small for highly sparse distri-
bution. Wavelet coefficients of natural images tend to have a low entropy because many coefficients
are small.

The Huffman scheme codes symbols independently, leading to a sub-optimal code if some of
the pi are large, which is usually the case for wavelet coefficients. One usually prefers arithmetic
coding schemes, that codes groups of symbols, and are able to get close to the entropy bound
R ≈ E(p)N for large N .

E(p) = log2(Q) E(p) = 0 0 < E(p) < log2(Q)

Figure 4.14: Three different probability distributions.

4.4.5 JPEG-2000
JPEG-2000 is the latest still image compression standard. It corresponds to a wavelet transform

coder that performs a clever adaptive entropy coding that makes use of the statistical redundancy
of wavelet coefficients of natural images. The wavelet transform is not orthogonal, it is a symmetric
7/9 biorthogonal, with symmetric boundary condition and a lifting implementation. This transform
is however close to orthogonality, so that the previous discussion about orthogonal approximation
and coding is still relevant.

4.4. TRANSFORM CODING 53

Figure 4.15: JPEG-2000 coding architecture.

Figure 4.15 shows an overview of JPEG-2000 architecture. Figure 4.16 shows a comparison
between JPEG and JPEG-2000 compressors. JPEG is based on a local DCT transform, and
suffers from blocking artifacts at low bit rates, which is not the case of JPEG-2000. This new
standard also comes with several important features, such as regions of interest, which allows to
refine the coding in some specific parts of the image.

Figure 4.16: Comparison of JPEG (left) and JPEG-2000 (right) coding.

Dyadic quantization. The wavelet coefficients are quantized with a varying quantization step
Ti = 2−iT0. This allows one to progressively increase the precision of the coded coefficients. For
each i, a bit plane coding pass produces new bits to refine the value of the coefficients when i
increases.

54 CHAPTER 4. APPROXIMATION AND COMPRESSION

Steam packing. The bits obtained using the bit plane pass with quantizer Ti = 2−iT0 are
entropy coded using a contextual coder. This coder processes square blocks Sk of coefficients. This
local coding enhances the parallelization of the method. This local block coding produces a bit
stream cki , and these streams are optimally packed into the final coded file to reduce the distortion
||f −fR|| for almost every possible number R of bits. This stream packing ensures scalability of the
output bit stream. It means that one can receive only the R first bits of a large coded file and get
a low resolution decoded image fR that has an almost minimal distortion ||f − fR||.

Bit plane coding pass. For each threshold Ti, for each scale and orientation (j, ω ∈ {V,H,D}),
for each coefficient location n ∈ Sk, JPEG-2000 coder encodes several bit reflecting the value of
the wavelet coefficient dωj [n]. In the following we drop the dependancy on (j, ω) for simplicity.

If dωj [n] < Ti−1, the coefficient was not significant at bit-plane i−1. It thus encodes a significance
bit b1i [n] to tell wether dωj [n] > Ti or not.
If b1i [n] = 1, meaning that the coefficient has became significant, it codes it sign as a bit b2i [n].
For every position n that was previously significant, meaning dωj [n] > Ti−1, it codes a value
refinement bit b3i [n] to tell wether dωj [n] > Ti or not.

Contextual coder. The final bits streams cki are computed from the produced bits {bsi [n]}3s=1

for n ∈ Sk using a contextual coder. The contextual coding makes use of spacial redundancies in
wavelet coefficients, especially near edges and geometric singularities that create clusters of large
coefficients. The coefficients n ∈ Sk are traversed in zig-zag order as shown on Figure 4.17.

code block width

3× 3 context window

Figure 4.17: Coding order and context for JPEG-2000 coding.

For each coefficient location n ∈ Sk, the context value vsi [n] of the bit bsi [n] to code at position
x is an integer computed over a 3× 3 window

wn = {(n1 + ε1, n2 + ε2)}εi=±1.

This local context vsi [n] integrates in a complicated way the previous bit plane values {bsi−1[ñ]}ñ∈wn ,
and neighboring bits at plane {bsi [ñ]}ñ∈wn,ñ coded that have already been coded.

The bit value bsi [n] is then coded with an arithmetic coding by making use of the conditional
probability distribution P(bsi [n]|vsi [n]). The choice made for the computation vsi [n] allows to re-
duce significantly the entropy of this conditional probability condition with respect to the original
distribution P(bsi [n]), thus reducing the overall number of bits.

4.5 Fourier Approximation of Smooth Functions
The smooth signal and image model (4.5) assumed that the analog function have bounded α

continuous derivatives. A function f with a large α has more smoothness, and is thus simpler to
approximate. Figure 4.5 shows images with increasing smoothness.

4.5. FOURIER APPROXIMATION OF SMOOTH FUNCTIONS 55

4.5.1 1D Fourier Approximation
A 1D signal f ∈ L2([0, 1]) is associated to a 1-periodic function f(t + 1) = f(t) defined for

t ∈ R.

Low pass approximation. We consider a linear Fourier approximation, that only retains low
frequencies

f lin
M =

M/2∑
m=−M/2

〈f, em〉em

where we use the 1D Fourier atoms

∀n ∈ Z, em(t) = e2iπmt.

We note that fM actually requires M + 1 Fourier atoms.
Figure 4.18 shows examples of such linear approximation for an increasing value of M . Since

the original function f is singular (no derivative), this produces a large error and one observe
ringing artifacts near singularities. Code 7 implement this low pass linear approximation and code
8 implement the non-linear approximation.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 4.18: Fourier approximation of a signal.

F = fftshift(fft2(f));
n = size(f,1);
F1 = zeros(n);
sel = (n/2−m:n/2+m)+1;
F1(sel,sel) = F(sel,sel);
f1 = real(ifft2(fftshift(F1)));

Matlab code 7: 2D Fourier linear approximation. Input: image f, parameter m, output: approx-
imation f1. The number of coefficients is M = (2m+1)2.

F = fft2(f);
a = sort(abs(F(:))); a = a(end:−1:1);
T = a(M+1);
F = F .* (abs(F)>T);
f1 = real(ifft2(F));

Matlab code 8: 2D Fourier linear approximation. Input: image f and number of coefficients M,
output: approximation f1.

Low pass approximation and filtering. This low pass approximation corresponds to a filter-
ing, since

fM =
M/2∑

m=−M/2

〈f, em〉em = f ? hM where ĥ[k] = 1[−M/2,M/2][k].

56 CHAPTER 4. APPROXIMATION AND COMPRESSION

Decay of Fourier coefficients. Using integration by part, one shows that for a Cα function f
in the smooth signal model (4.5), one has

|〈f, em〉| 6 |2πm|−α||f (α)||.

This implies a fast decay of the linear approximation error

||f − f lin
M || =

∑
|m|>M/2

|〈f, em〉|2 6 ||f (α)||
∑

|m|>M/2

|2πm|−2α = O(M−2α+1).

We show next that a more precise estimation caries over for the larger class of Sobolev signals.

4.5.2 Sobolev Signal Approximation

For signal f in the Sobolev model (4.8), one has

||f (α)||2 =
∑
m

|2πm|2α|〈f, em〉|2 >
∑

|m|>M/2

|2πm|2α|〈f, em〉|2 (4.24)

> (πM)2α
∑

m>M/2

|〈f, em〉|2 > (πM)2α||f − f lin
M ||2. (4.25)

This shows that the linear approximation error of a 1D Sobolev smooth signal satisfies

||f − f lin
M ||2 6 C||f (α)||2M−2α. (4.26)

One can also shows that this asymptotic error decay is optimal, and that the non-linear approxi-
mation error in Fourier also decays like O(M−2α).

For a signal in the piecewise smooth model (4.9), such as the one shows in Figure 4.18, one
only has a slow decay of the linear and non-linear approximation error

||f − fM ||2 6 CfM
−1 (4.27)

and Fourier atoms are not anymore optimal for approximation.

4.5.3 Sobolev Images

This analysis caries over to images and higher dimensional datasets by considering a Sobolev
functional (4.7) for d > 1.

The linear and non-linear approximation of an α-regular Sobolev image then satisfy

||f − fM ||2 6 C||fα||2M−α.

For d-dimensional data f : [0, 1]d → R, one would have an error decay of O(M−2α/d).
For an image in the piecewise smooth model (4.10), the linear and non-linear error decays are

slow,
||f − fM ||2 6 CfM

−1/2, (4.28)

and Fourier atoms are not anymore optimal for approximation.

4.6 Wavelet Approximation of Piecewise Smooth Functions

Wavelet approximation improve significantly over Fourier approximation to capture singulari-
ties. This is due to the localized support of wavelets.

4.6. WAVELET APPROXIMATION OF PIECEWISE SMOOTH FUNCTIONS 57

Figure 4.19: Linear (top row) and non-linear (bottom row) Fourier approximation.

f(x)

Figure 4.20: Singular par of signals (left) and image (right).

4.6.1 Decay of Wavelet Coefficients
To efficiently approximate regular parts of signals and images, one uses wavelet with a large

enough number p of vanishing moments

∀ k < p,

∫
ψ(x)xkdx = 0.

This number p should be larger than the regularity α of the signal outside singularities (for instance
jumps or kinks).

To quantify the approximation error decay for piecewise smooth signals (4.9) and images (4.10),
one needs to treat differently wavelets that are in regular and singular areas. Figure 4.20 shows
for a signal and an image the localization of singular and regular parts.

If f is Cα on supp(ψj,n), with p > α, then one can perform a Taylor expansion of f around the
point 2jn

f(x) = P (x− 2jn) +R(x− 2jn) = P (2jt) +R(2jt)

where deg(P) < α and
|R(x)| 6 Cf ||x||α.

One then bounds the wavelet coefficient

〈f, ψj,n〉 =
1

2j
d
2

∫
f(x)ψ

(
x− 2jn

2j

)
dx = 2j

d
2

∫
R(2jt)ψ(t)dt

where we have performed the change of variable t = x−2jn
2j .

58 CHAPTER 4. APPROXIMATION AND COMPRESSION

This shows that if supp(ψj,n) does not contain a singularity of the signal (d = 1) or image
(d = 2) f , one has

|〈f, ψj,n〉| 6 Cf ||ψ||12j(α+d/2). (4.29)

For wavelets that are too close to a singularity, one can only use the fact that f is bounded, so
that

|〈f, ψj,n〉| 6 ||f ||∞||ψ||12j
d
2 .

4.6.2 1D Piecewise Smooth Approximation

For 1D signal in the piecewise regular model (4.9), large wavelets coefficients 〈f, ψj,n〉 are
clustered around the singularities of the signal. We call S ⊂ [0, 1] the finite set of singular points.

Coefficient segmentation. The singular support at scale 2j is the set of coefficients correspond-
ing to wavelets that are crossing a singularity

Cj = {n \ supp(ψj,n) ∩ S 6= ∅} (4.30)

It has a constant size because of the dyadic translation of wavelets

|Cj | 6 K|S| = constant.

Using (4.29) for d = 1, the decay of regular coefficients is bounded as

∀n ∈ Ccj , |〈f, ψj,n〉| 6 C2j(α+1/2).

Using (4.6.1) for d = 1, the decay of singular coefficients is bounded as

∀n ∈ Cj , |〈f, ψj,n〉| 6 C2j/2.

Once a fixed threshold T is fixed to compute the non-linear approximation, one defines cut-off
scales for regular and singular coefficients that depend on T

2j1 = (T/C)
1

α+1/2 and 2j2 = (T/C)2.

Figure 4.21 shows a schematic segmentation of the set of wavelet coefficients into regular and
singular parts, and also using the cut-off scales.

x1 x2

S = {x1, x2}
f(x)

j1

j2

Large coefficient

|〈f, ψjn〉| < T
Small coefficient

Figure 4.21: Segmentation of the wavelet coefficients into regular and singular parts.

4.6. WAVELET APPROXIMATION OF PIECEWISE SMOOTH FUNCTIONS 59

Counting the error. These cut-off scales allow us to define a hand-crafted approximation signal

f̃M =
∑
j>j2

∑
n∈Cj

〈f, ψj,n〉ψj,n +
∑
j>j1

∑
n∈Cc

j

〈f, ψj,n〉ψj,n. (4.31)

The approximation error generated by this M -term approximation f̃M is larger than the best
M -term approximation error, and hence

||f − fM ||2 6 ||f − f̃M ||2 6
∑

j<j2,n∈Cj

|〈f, ψj,n〉|2 +
∑

j<j1,n∈Cc
j

|〈f, ψj,n〉|2 (4.32)

6
∑
j<j2

(K|S|)× C22j +
∑
j<j1

2−j × C22j(2α+1) (4.33)

= O(2j2 + 22αj1) = O(T 2 + T
2α

α+1/2) = O(T
2α

α+1/2). (4.34)

Counting the number of measurements. The number of coefficients needed to build the
approximating signal f̃M is

M 6
∑
j>j2

|Cj |+
∑
j>j1

|Ccj | 6
∑
j>j2

K|S|+
∑
j>j1

2−j (4.35)

= O(| log(T)|+ T
−1

α+1/2) = O(T
−1

α+1/2). (4.36)

Putting everything together. Putting equations (4.32) and (4.35) together, one obtains that
if f is in the piecewise smooth signal model (4.9), the non-linear approximation error in wavelet
obeys

||f − fM ||2 = O(M−2α). (4.37)

This improves significantly over the O(M−1) decay of Fourier approximation (4.27). Furthermore,
this decay is the same as the error decay of uniformly smooth signal (4.26). In 1D, wavelet approx-
imations do not “see” the singularities. The error decay (4.37) can be shown to be asymptotically
optimal.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 4.22: 1D wavelet approximation.

Figure 4.22 shows examples of wavelet approximation of singular signals.

60 CHAPTER 4. APPROXIMATION AND COMPRESSION

4.6.3 2D Piecewise Smooth Approximation

For an image in the piecewise smooth model (4.10), we define the singular support Cj as in
(4.30). The major difference with the 1D setting, is that for 2D images, the size of the singular
support grows when the scale 2j goes to zero

|Cωj | 6 2−jK|S|,

where |S| is the perimeter of the singular curves S, and ω ∈ {V,H,D} is the wavelet orientation.
Using (4.29) for d = 2, the decay of regular coefficients is bounded as

∀n ∈ (Cωj)c, |〈f, ψωj,n〉| 6 C2j(α+1).

Using (4.6.1) for d = 2, the decay of singular coefficients is bounded as

∀n ∈ Cωj , |〈f, ψωj,n〉| 6 C2j .

After fixing T , the cut-off scales are defined as

2j1 = (T/C)
1

α+1 and 2j2 = T/C.

We define similarly to (4.31) a hand-made approximation. Similarly to (4.32), we bound the
approximation error as

||f − fM ||2 6 ||f − f̃M ||2 = O(2j2 + 22αj1) = O(T + T
2α

α+1) = O(T)

and the number of coefficients as

M = O(T−1 + T
−1

α+1) = O(T−1).

This leads to a decay of the non-linear wavelet approximation error

||f − fM ||2 = O(M−1). (4.38)

This improves significantly over the O(M−1/2) decay of Fourier approximation (4.28). This result
is however deceiving, since it does not take advantage of the Cα regularity of the image outside
the edge curves.

This error decay is still valid for the more general model of images with bounded variations
(4.11). One can shows that wavelets are asymptotically optimal to approximate images with
bounded variations.

Figure 4.23: 2D wavelet approximation.

Figure 4.23 shows wavelet approximations of a bounded variation image. Code 9 implements
the linear wavelet approximation and code 10 implements the non-linear approximation.

4.7. CARTOON IMAGES APPROXIMATION 61

fw = perform_wavelet_transf(f,j0,+1);
n = size(f,1); fw1 = zeros(n);
fw1(1:n/4,1:n/4) = fw(1:m,1:m);
f1 = perform_wavelet_transf(fw1,j0,−1);

Matlab code 9: 2D wavelets linear approximation. Input: image f, parameter m, coarse scale j0,
output: approximation f1. The number of coefficients is M =m2.

fw = perform_wavelet_transf(f,j0,+1);
a = sort(abs(fw(:))); a = a(end:−1:1);
T = a(M+1);
fw1 = fw .* (abs(fw)>T);
f1 = perform_wavelet_transf(fw1,j0,−1);

Matlab code 10: 2D wavelets linear approximation. Input: image f and number of coefficients
M, coarse scale j0, output: approximation f1.
4.7 Cartoon Images Approximation

The square support of wavelet makes them inefficient to approximate geometric images (4.13),
whose edges are more regular than the level set of bounded variation images (4.11), which are only
assumed to be of finite length.

4.7.1 Wavelet Approximation of Cartoon Images
Result (4.38) shows that wavelet approximation of images in the cartoon models (4.13) decays

at least like O(M−1). One can show that simple cartoon images like f = 1Ω where Ω is a disk
reach this low decay speed. This is because the square support of wavelets forbid them to take
advantage of the regularity of edge curves. The approximation error for the smoothed cartoon
model (4.14) is also slow if the width of the blurring kernel is small with respect to the number M
of coefficients.

Figure 4.24 shows that many large coefficients are located near edge curves, and retaining only
a small number leads to a bad approximation with visually unpleasant artifacts.

f {〈f, ψωj,n〉} fM

Figure 4.24: Wavelet approximation of a cartoon image.

4.7.2 Finite Element Approximation
To improve over the wavelet approximation, one can design an adapted triangulation that is

highly anisotropic near edges. Figure 4.25 shows an example of such a triangulation.
A triangulation is obtain by sampling M points over the image domain [0, 1]2 and then con-

necting them using triangles. One then defines a piecewise linear interpolation f̃M over these
triangles.

As shown in Figure 4.26, an efficient approximation of a C2-cartoon image (4.13) for α = 2
is obtained by seeding ≈ M/2 approximately equilateral triangles of width ≈ M−1/2 in the areas

62 CHAPTER 4. APPROXIMATION AND COMPRESSION

Figure 4.25: Left: cartoon image, right: adaptive triangulation.

M−1/2

M−1/2

Figure 4.26: Aspect ratio of triangle away from edges (left) and near an edge (right).

where the image is regular. Near the edges, using the C2 regularity of the singular curve, one can
seed ≈M/2 anisotropic triangles of length M−1 and width ≈M−1/2. One can show that such an
adaptive triangulation leads to an approximation error

||f − fM ||2 = O(M−2), (4.39)

which improves over the wavelet approximation error decay (4.38).
This scheme is however difficult to implement in practice, since the edge curves are not known

and difficult to find. This is in particular the case for smooth cartoon images when the smoothing
kernel h is unknown.

There is currrently no known algorithm that can automatically produces the error decay (4.39).
One thus has to use heuristics and greedy algorithm to find the location of the sampling points
and computes the triangles. Figure (4.27) shows an example of compression using such a greedy
seeding algorithm, that works well in practice.

Adpated triangulation f̃M JPEG-2000

Figure 4.27: Comparison of adaptive triangulation and JPEG-2000, with the same number of bits.

4.7. CARTOON IMAGES APPROXIMATION 63

4.7.3 Curvelets Approximation
Instead of using an adaptive approximation scheme such as finite elements, one can replace the

wavelet basis by a set of oriented anisotropic atoms. The curvelet frame was proposed by Candès
and Donoho for this purpose [3].

Curvelets. The curvelet construction starts from a curvelet function c that is oriented along the
horizontal direction, and perform stretching

c2j (x1, x2) ≈ 2−3j/4c(2−j/2x1, 2−jx2),

translation and rotation
cθ2j ,u(x1, x2) = c2j (Rθ(x− u))

where Rθ is the rotation of angle θ.
The atoms cθ2j ,u is located near u, with an orientation θ, and has an aspect ratio “width ≈

length2”, which is the same aspect used to build an adaptive finite element approximation. This
aspect ratio is essential to capture the anisotropic regularity near edges for images in the cartoon
model (4.13) for α = 2.

Figure 4.28: Left: a curvelet cm, right: its Fourier transform localization.

Figure 4.29 shows the spacial and frequency localization of curvelets.

Parameter discretization. To build an image representation, one need to sample the u and θ
parameter. To maintain a stable representation, the sub-sampling of the angles depends on the
scale

∀ 0 6 k < 2−dj/2e+2, θ
(j)
k = kπ2dj/2e−1

and the spacial grid depends on the scale and on the angles

∀m = (m1,m2) ∈ Z2, u(j,θ)
m = Rθ(2j/2m1, 2jm2).

Figure 4.29 shows this sampling pattern.

Curvelet tight frame. This sampling leads to a stable redundant family

Cj,m,k(x) = cθ2j ,u(x) where θ = θ
(j)
k and u = u(j,θ)

m ,

that obeys a conservation of energy

||f ||2 =
∑
j∈Z

2−dj/2e+2∑
k=0

∑
m∈Z2

|〈f, Cj,m,k〉|2

64 CHAPTER 4. APPROXIMATION AND COMPRESSION

Figure 4.29: Sampling pattern for the curvelet positions.

and a reconstruction formula

f =
∑
j∈Z

2−dj/2e+2∑
k=0

∑
m∈Z2

〈f, Cj,m,k〉Cj,m,k

that extends the properties of orthogonal basis (tight frame), although the representation is redun-
dant (the atoms are not orthogonal).

A numerical implementation of this tight frame also defines a discrete tight frame for image of
N pixels, that is made of ≈ 5N atoms [4].

Curvelet approximation. A non-linear M -term approximation in curvelets is defined as

fM =
∑

|〈f, Cj,m,k〉|>T

〈f, Cj,m,k〉Cj,m,k

where T is a threshold that depends on M . One should note that fM is not necessarily the best
M -term curvelet approximation since the curvelet frame is not orthogonal.

For position u
(j,θ)
m that are far away from an edges, the vanishing moments of the curvelets

create a small coefficient 〈f, Cj,m,k〉. If u(j,θ)
m is close to an edge curve whose tangent has direction

θ̃, then the coefficient 〈f, Cj,m,k〉 decays very fast to zero when |θ− θ̃| increases. Figure 4.30 shows
the principle of this curvelet approximation, and compares it with directional wavelets that have
a square support.

Figure 4.30: Comparison of the principle of wavelets (left) and curvelet (right) approximations of
a cartoon image.

4.7. CARTOON IMAGES APPROXIMATION 65

Using these two properties together with the sparse sampling of the curvelet in space and
orientation leads to the following approximation error decay

||f − fM ||2 = O(log3(M)M−2)

for image in the cartoon model (4.13) for α = 2. This is close to the decay of adaptive triangulations
(4.39), but this time one computes fM with a fast O(N log(N)) algorithm for an image of N pixels.

In practice, the redundancy of the curvelet frame makes it not suitable for image compression.
Its efficiency is however useful for denoising purpose, where it can improve over wavelet to denoise
geometric images and textures, see Figure 4.31. The result is obtained by using a thresholding
denoiser as detailed in Section 5.3.1.

Noisy f Wavelet f̃ Curvelets f̃

Figure 4.31: Comparison of wavelets (translation invariant) and curvelet denoising.

66 CHAPTER 4. APPROXIMATION AND COMPRESSION

Chapter 5

Denoising with Thresholding

Together with compression, denoising is the most important processing application, that is
pervasive in almost any signal or image processing pipeline. Indeed, data acquisition always comes
with some kind of noise, so modeling this noise and removing it efficiently is crucial.

5.1 Noise Modeling

5.1.1 Noise in Images

Image acquisition devices always produce some noise. Figure 5.1 shows images produced by
different hardware, where the regularity of the underlying signal and the statistics of the noise is
very different.

Digital camera Confocal imaging SAR imaging

Figure 5.1: Example of noise in different imaging device.

One should thus model both the acquisition process and the statistics of the noise to fit the
imaging process. Then one should also model the regularity and geometry of the clean signal to
choose a basis adapted to its representation. This chapter describes how thresholding methods
can be used to perform denoising in some specific situations where the noise statistics are close to
being Gaussian and the mixing operator is a sum or can be approximated by a sum.

In the following, we consider only finite dimensional signal f ∈ CN .

5.1.2 Image Formation

Figure 5.2 shows an idealized view of the image formation process, that mixes a clean image f0
with a noise w to obtain noisy observations f = f0 ⊕w, where ⊕ might for instance be a sum or a
multiplication.

67

68 CHAPTER 5. DENOISING WITH THRESHOLDING

Figure 5.2: Image formation with noise modeling and denoising pipepline.

Statistical modeling considers w as a random vector with known distribution, while numerical
computation are usually done on a single realization of this random vector, still denoted as w.

Additive Noise. The simplest model for such image formation consists in assuming that it is
an additive perturbation of a clean signal f0

f = f0 + w

where w is the noise residual. Statistical noise modeling assume that w is a random vector, and in
practice one only observes a realization of this vector. This modeling thus implies that the image
f to be processed is also a random vector. Figure 5.3 and 5.4 show examples of noise addition to
a clean signal and a clean image.

f0 f

Figure 5.3: 1D additive noise example.

f0 f

Figure 5.4: 2D additive noise example.

The simplest noise model assumes that each entry w[n] of the noise is a Gaussian random
variable of variance σ2, and that the w[n] are independent. This is the white noise model.

5.2. LINEAR DENOISING USING FILTERING 69

Depending on the image acquisition device, one should consider different noise distributions,
such as for instance uniform noise w[n] ∈ [−a, a] or Impulse noise

p(w[n] = x) ∝ e−|x/σ|
α

where α < 2

In many situations, the noise perturbation is not additive, and for instance its intensity might
depend on the intensity of the signal. This is the case with Poisson and multiplicative noises
considered in Section 5.4.

5.1.3 Denoiser

A denoiser (also called estimator) is an estimation f̃ of f0 computed from the observation f
alone. It is thus also a random vector that depends on the noise w. Since f is a random vector of
mean f0, the numerical denoising process corresponds to the estimation of the mean of a random
vector from a single realization. Figure 5.5 shows an example of denoising.

The quality of a denoiser is measured using the average mean square risk Ew(||f0− f̃ ||2). where
Ew is the esperance (averaging) with respect to the noise w. Since f0 is unknown, this corresponds
to a theoretical measure of performance, that is bounded using a mathematical analysis. In the
numerical experiments, one observes a single realization f = f0 + w, and the performance is
estimated from this single denoising using the SNR

SNR(f̃ , f0) = −20 log10(||f̃ − f0||/||f0||),

which is expressed in dB. This measure of performance requires the knowledge of the clean signal
f0, and should thus only be considered as an experimentation tool, that might not be available
in a real life denoising scenario where clean data are not available. Furthermore, the use of an
L2 measure of performance is questionable, and one should also observe the result to judge of the
visual quality of the denoising.

f0 f f̃

Figure 5.5: Left: clean image, center: noisy image, right: denoised image.

5.2 Linear Denoising using Filtering

5.2.1 Translation Invariant Estimators

A linear estimator E(f) = f̃ of f0 depends linearly on f , so that E(f + g) = E(f) + E(g). A
translation invariant estimator commutes with translation, so that E(fτ) = E(f)τ , where fτ (t) =
f(t− τ). Such a denoiser can always be written as a filtering

f̃ = f ? h

70 CHAPTER 5. DENOISING WITH THRESHOLDING

where h ∈ RN is a (low pass) filter, that should satisfy at least∑
n

h[n] = ĥ[0] = 1.

Figure 5.6 shows an example of denoising using a low pass filter.

f log(f̂)

f log(ĥ)

f ? h log(f̂ · ĥ) = log(ĥ) + log(ĥ)

Figure 5.6: Denoising by filtering over the spacial (left) and Fourier (right) domains.

The filtering strength is usually controlled the width s of h. A typical example is the Gaussian
filter

∀ −N/2 < i 6 N/2, hs[i] =
1
Zs

exp
(
− i2

2s2

)
(5.1)

where Zs ensures that
∑
i hs[i] = 1 (low pass). Figure 5.6 shows the effect of Gaussian filtering

over the spacial and Fourier domains.
Figure 5.7 shows the effect of low pass filtering on a signal and an image with an increasing filter

width s. Linear filtering introduces a blur and are thus only efficient to denoise smooth signals and
image. For signals and images with discontinuities, this blur deteriorates the signal. Removing a
large amount of noise necessitates to also smooth significantly edges and singularities.

5.2.2 Optimal Filter Selection
The selection of an optimal filter is a difficult task. Its choice depends both on the regularity

of the (unknown) data f0 and the noise level σ. A simpler option is to optimize the filter width s
among a parametric family of filters, such as for instance the Gaussian filters defined in (5.1).

The denoising error can be decomposed as

||f̃ − f0|| 6 ||hs ? f0 − f0||+ ||hs ? w||

The filter width s should be optimized to perform a tradeoff between removing enough noise
(||hs ? w|| decreases with s) and not smoothing too much the singularities ((||hs ? f0 − f0|| increases
with s).

Figure (5.8) shows the oracle SNR performance, defined in (??).
Figure 5.9 and 5.10 show the results of denoising using the optimal filter width s? that minimizes

the SNR for a given noisy observation.

5.2. LINEAR DENOISING USING FILTERING 71

Figure 5.7: Denoising using a filter of increasing width s.

Figure 5.8: Curves of SNR as a function of the filtering width in 1D (left) and 2D (right).

These optimal filtering appear quite noisy, and the optimal SNR choice is usually quite conser-
vative. Increasing the filter width introduces a strong blurring that deteriorates the SNR, although
it might look visually more pleasant.

5.2.3 Wiener Filter

If one has a random model both for the noise w ∼ W and for for the signal f0 ∼ F , one can
derives an optimal filters in average over both the noise and the signal realizations. One further
assumes that w and f0 are independent realization. The optimal h thus minimizes

EW,F (||h ? (F +W)− F ||2)

If both F is wide-sense stationary, and W is a Gaussian white noise of variance σ2, then the optimal
filer is known as the Wiener filter

ĥ(ω) =
|F̂ (ω)|2

|F̂ (ω)|2 + σ2

where |F̂ |2 is the power spectrum of F ,

F̂ (ω) = Ĉ(ω) where C[n] = E(〈F, F [·+ n]〉),

72 CHAPTER 5. DENOISING WITH THRESHOLDING

Figure 5.9: Noisy image (left) and denoising (right) using the optimal filter width.

Figure 5.10: Noisy image (left) and denoising (right) using the optimal filter width.

the Fourier transform of an infinite vector is defined in (2.6).
In practice, one rarely has such a random model for the signal, and interesting signals are often

not stationary. Most signals exhibit discontinuities, and are thus poorly restored with filtering.

5.3 Non-linear Denoising using Thresholding

5.3.1 Hard Thresholding

We consider an orthogonal basis {ψm}m of CN , for instance a discrete wavelet basis.
The noisy coefficients satisfy

〈f, ψm〉 = 〈f0, ψm〉+ 〈w, ψm〉. (5.2)

Since a Gaussian white noise is invariant under an orthogonal transformation, 〈w, ψm〉 is also a
Gaussian white noise of variance σ2. If the basis {ψm}m is efficient to represent f0, then most
of the coefficients 〈f0, ψm〉 are close to zero, and one observes a large set of small noisy coeffi-
cients, as shown on Figure 5.11. This idea of using thresholding estimator for denoising was first
systematically explored by Donoho and Jonhstone [13].

f 〈f, ψωj,n〉 ST (〈f, ψωj,n〉) f̃

Figure 5.11: Denoising using thresholding of wavelet coefficients.

A thresholding estimator removes these small amplitude coefficients using a non-linear hard

5.3. NON-LINEAR DENOISING USING THRESHOLDING 73

thresholding

f̃ =
∑

|〈f, ψm〉|>T

〈f, ψm〉ψm =
∑
m

ST (〈f, ψm〉)ψm.

where ST is defined in (4.4). This corresponds to the computation of the best M -term approxi-
mation f̃ = fM of the noisy function f . Figure 5.11 shows that if T is well chose, this non-linear
estimator is able to remove most of the noise while maintaining sharp features, which was not the
case with linear filtering estimatiors.

Code 11 shows how to implement this thresholding for a 1D or 2D wavelet transform.

% Forward wavelet transform
fw = perform_wavelet_transf(f,j0,+1);
% Hard thresholding.
fw = fw .* (abs(fw)>T);
% Backward wavelet transform
f1 = perform_wavelet_transf(fw,j0,−1);

Matlab code 11: Denoising by hard thresholding. Input: noisy image f, coarse scale j0, threshold
T, output: denoised image f1.

5.3.2 Soft Thresholding

We recall that the hard thresholding operator is defined as

ST (x) = S0
T (x) =

{
x if |x| > T,
0 if |x| 6 T.

(5.3)

This thresholding performs a binary decision that might introduces artifacts. A less aggressive
nonlinearity is the soft thresholding

S1
T (x) = max(1− T/|x|, 0)x. (5.4)

Figure 5.12 shows the 1D curves of these 1D non-linear mapping.

Figure 5.12: Hard and soft thresholding functions.

For q = 0 and q = 1, these thresholding defines two different estimators

f̃q =
∑
m

SqT (〈f, ψm〉)ψm

74 CHAPTER 5. DENOISING WITH THRESHOLDING

Figure 5.13: Curves of SNR with respect to T/σ for hard and soft thresholding.

Coarse scale management. The soft thresholded S1
T introduces a bias since it diminishes the

value of large coefficients. For wavelet transforms, it tends to introduces unwanted low-frequencies
artifacts by modifying coarse scale coefficients. If the coarse scale is 2j0 , one thus prefers not to
threshold the coarse approximation coefficients and use, for instance in 1D,

f̃1 =
∑

06n<2−j0

〈f, φj0,n〉φj0,n +
0∑

j=j0

∑
06n<2−j

S1
T (〈f, ψj0,n〉)ψj0,n.

Code 12 implements this soft thresholding with coarse scale management.

% Forward wavelet transform
fw = perform_wavelet_transf(f,j0,+1);
% Soft thresholding.
fw1 = max(1−T./(abs(fw)+1e−20), 0).*fw;
% Add back the coarse scale coefficients
fw1(1:2^j0) = fw(1:2^j0);
% Backward wavelet transform
f1 = perform_wavelet_transf(fw,j0,−1);

Matlab code 12: Denoising by soft thresholding. Input: noisy image f, coarse scale j0, threshold
T, output: denoised image f1.

Empirical choice of the threshold. Figure 5.13 shows the evolution of the SNR with respect
to the threshold T for these two estimators, for a natural image f0. For the hard thresholding,
the best result is obtained around T ≈ 3σ, while for the soft thresholding, the optimal choice is
around T ≈ 3σ/2. These results also shows that numerically, for thresholding in orthogonal bases,
soft thresholding is slightly superior than hard thresholding on natural signals and images.

Although these are experimental conclusions, these results are robust across various natural
signals and images, and should be considered as good default parameters.

5.3.3 Minimax Optimality of Thresholding
Sparse coefficients estimation. To analyze the performance of the estimator, and gives an
estimate for the value of T , we first assumes that the coefficients

a0[m] = 〈f0, ψm〉 ∈ RN

are sparse, meaning that most of the a0[m] are zero, so that its `0 norm

||a0||0 = # {m \ a0[m] 6= 0}

5.3. NON-LINEAR DENOISING USING THRESHOLDING 75

20.9dB 21.8dB

Figure 5.14: Comparison of hard (left) and soft (right) thresholding.

is small. As shown in (5.2), noisy coefficients

〈f, ψm〉 = a[m] = a0[m] + z[m]

are perturbed with an additive Gaussian white noise of variance σ2. Figure 5.15 shows an example
of such a noisy sparse signal.

Figure 5.15: Left: sparse signal a, right: noisy signal.

Universal threshold value. If
min

m:a0[m] 6=0
|a0[m]|

is large enough, then ||f0 − f̃ || = ||a0 − ST (a)|| is minimum for

T ≈ τN = max
06m<N

|z[m]|.

τN is a random variable that depends on N . One can show that its mean is σ
√

2 log(N), and that
as N increases, its variance tends to zero and τN is highly concentrated close to its mean. Figure
5.16 shows that this is indeed the case numerically.

Asymptotic minimax optimality. Donoho and Jonhstone [13] have shown that the universal
threshold T = σ

√
2 log(N) is a good theoritical choice for the denoising of signals that are well

approximated in {ψm}m. In particular, they show that if the non-linear approximation error in
this basis decays like

||f − fM ||2 = O(M−α),

then the denoising average error with hard and soft thresholding decays like

Ew(||f0 − f̃ ||2) = O(σ
2α

α+1),

and that this decay rate with σ is in some sense optimal.
This universal threshold choice is however very conservative since it is guaranteed to remove

almost all the noise. In practice, as shown in Figure 5.14, better results are obtained on natural
signals and images by using T ≈ 3σ and T ≈ 3σ/2 for hard and soft thresholdings.

76 CHAPTER 5. DENOISING WITH THRESHOLDING

Figure 5.16: Empirical estimation of the mean of Zn (top) and standard deviation of Zn (bottom)

5.3.4 Translation Invariant Thresholding Estimators

Translation invariance. Let f 7→ f̃ = D(f) by a denoising method, and fτ (x) = f(x − τ) be
a translated signal or image for τ ∈ Rd, (d = 1 or d = 2). The denoising is said to be translation
invariant at precision ∆ if

∀ τ ∈ ∆, D(f) = D(fτ)−τ

where ∆ is a lattice of Rd. The denser ∆ is, the more translation invariant the method is. This
corresponds to the fact that D computes with the translation operator.

Imposing translation invariance for a fine enough set ∆ is a natural constraint, since intuitively the
denoising results should not depend on the location of features in the signal or image. Otherwise,
some locations might be favored by the denoising process, which might result in visually unpleasant
denoising artifacts.

For denoising by thresholding

D(f) =
∑
m

ST (〈f, ψm〉)ψm.

then translation invariance is equivalent to asking that the basis {ψm}m is translation invariant at
precision ∆,

∀m, ∀ τ ∈ ∆, ∃m, ∃λ ∈ C, (ψm′)τ = λψm

where |λ| = 1.
The Fourier basis is fully translation invariant for ∆ = Rd over [0, 1]d with periodic boundary

conditions and the discrete Fourier basis is translation invariant for all interger translations ∆ =
{0, . . . , N0− 1}d where N = N0 is the number of points in 1D, and N = N0×N0 is the number of
pixels in 2D.

Unfortunately, an orthogonal wavelet basis

{ψm = ψj,n}j,n

is not translation invariant both in the continuous setting or in the discrete setting. For instance,
in 1D,

(ψj′,n′)τ /∈ {ψj,n} for τ = 2j/2.

5.3. NON-LINEAR DENOISING USING THRESHOLDING 77

Cycle spinning. A simple way to turn a denoiser ∆ into a translation invariant denoiser is to
average the result of translated images

Dinv(f) =
1
|∆|

∑
τ∈∆

D(fτ)−τ . (5.5)

One easily check that
∀ τ ∈ ∆, Dinv(f) = Dinv(fτ)−τ

To obtain a translation invariance up to the pixel precision for a data of N samples, one should
use a set of |∆| = N translation vectors. To obtain a pixel precision invariance for wavelets, this
will result in O(N2) operations.

Figure 5.17 shows the result of applying cycle spinning to an orthogonal hard thresholding
denoising using wavelets, where we have used the following translation of the continuous wavelet
basis ∆ = {0, 1/N, 2/N, 3/N}2, which corresponds to discrete translation by {0, 1, 2, 3}2 on the
discretized image. The complexity of the denoising scheme is thus 16 wavelet transforms. The
translation invariance brings a very large SNR improvement, and significantly reduces the oscillat-
ing artifacts of orthogonal thresholding. This is because this artifacts pop-out at random locations
when τ changes, so that the averaging process reduces significantly these artifacts.

Figure 5.18 shows that translation invariant hard thresholding does a slightly better job than
translation invariant soft thresholding. The situation is thus reversed with respect to thresholding
in an orthogonal wavelet basis. Code 13 implement this cycle spinning for a 2D wavelet threshold-
ing.

21.8dB 23.4dB

Figure 5.17: Comparison of wavelet orthogonal soft thresholding (left) and translation invariant
wavelet hard thresholding (right).

[dY,dX] = meshgrid(0:s−1,0:s−1);
f1 = f*0;
for i=1:m^2

fs = circshift(f,[dX(i) dY(i)]);
fw = perform_wavelet_transf(fs,j0,1);
fw = fw .* (abs(fw)>T);
fs = perform_wavelet_transf(fw,j0,−1);
fs = circshift(fs,−[dX(i) dY(i)]);
f1 = (i−1)/i*f1 + 1/i*fs;

end

Matlab code 13: Denoising by cycle spinning. Input: noisy image f, coarse scale j0, threshold
T, number of spins in each direction s, output: denoised image f1.

Translation invariant wavelet frame. An equivalent way to define a translation invariant
denoiser is to replace the orthogonal basis B = {ψm} by a redundant family of translated vectors

Binv = {(ψm)τ}m,τ∈∆. (5.6)

78 CHAPTER 5. DENOISING WITH THRESHOLDING

Figure 5.18: Curve of SNR with respect to T/σ for translation invariant thresholding.

One should be careful about the fact that Binv is not any more an orthogonal basis, but it still
enjoy a conservation of energy formula

||f ||2 =
1
|∆|

∑
m,τ∈∆

|〈f, (ψm)τ 〉|2 and f =
1
|∆|

∑
m,τ∈∆

〈f, (ψm)τ 〉(ψm)τ .

This kind of redundant family are called tight frames.
One can then define a translation invariant thresholding denoising

Dinv(f) =
1
|∆|

∑
m,τ∈∆

ST (〈f, (ψm)τ 〉)(ψm)τ . (5.7)

This denoising is the same as the cycle spinning denoising defined in (5.5).
The frame Binv might contain up to |∆||B| basis element. For a discrete basis of signal with N

samples, and a translation lattice of |∆| = N vectors, it corresponds to up to N2 elements in Binv.
Hopefully, for a hierarchical basis such as a discrete orthogonal wavelet basis, one might have

(ψm)τ = (ψm′)τ ′ for m 6= m′ and τ 6= τ ′,

so that the number of elements in Binv might be much smaller than N2. For instance, for an
orthogonal wavelet basis, one has

(ψj,n)k2j = ψj,n+k,

so that the number of basis elements is |Binv| = N log2(N) for a 2D basis, and 3N log2(N) for a
2D basis. The fast translation invariant wavelet transform, also called “a trou” wavelet transform,
computes all the inner products 〈f, (ψm)τ 〉 in O(N log2(N)) operations. Implementing formula
(5.7) is thus much faster than applying the cycle spinning (5.5) equivalent formulation.

Translation invariant wavelet coefficients are usually grouped by scales in log2(N) (for d = 1)
or by scales and orientations 3 log2(N) (for d = 2) sets of coefficients. For instance, for a 2D
translation invariant transform, one consider

∀n ∈ {0, . . . , 2jN0 − 1}2, ∀ k ∈ {0, . . . , 2−j}2, dωj [2−jn+ k] = 〈f, (ψj,n)k2j 〉

where ω ∈ {V,H,D} is the orientation. Each set dωj has N coefficients and is a band-pass filtered
version of the original image f , as shown on Figure 5.19.

Figure 5.20 shows how these set of coefficients are hard thresholded by the translation invariant
estimator.

5.3.5 Exotic Thresholdings
It is possible to devise many thresholding nonlinearities that interpolate between the hard and

soft thresholder. We present here two examples, but many more exist in the literature. Depending
on the statistical distribution of the wavelet coefficients of the coefficients of f in the basis, these
thresholders might produce slightly better results.

5.3. NON-LINEAR DENOISING USING THRESHOLDING 79

f j = −8, ω = H j = −8, ω = V j = −8, ω = D

j = −7, ω = H j = −7, ω = V j = −7, ω = D

Figure 5.19: Translation invariant wavelet coefficients.

Figure 5.20: Left: translation invariant wavelet coefficients, for j = −8, ω = H, right: tresholded
coefficients.

Semi-soft thresholding. One can define a family of intermediate thresholder that depends on
a parameter µ > 1

SθT (x) = g 1
1−θ

(x) where gµ(x) =


0 if |x| < T
x if |x| > µT

sign(x) |x|−Tµ−1 otherwise.

One thus recovers the hard thresholding as S0
T and the soft thresholding as S1

T . Figure 5.21 display
an example of such a non-linearity.

Figure 5.22 shows that a well chosen value of µ might actually improves over both hard and
soft thresholders. The improvement is however hardly noticeable visually.

Stein thresholding. The Stein thresholding is defined using a quadratic attenuation of large
coefficients

SStein
T (x) = max

(
1− T 2

|x|2
, 0
)
x.

This should be compared with the linear attenuation of the soft thresholding

S1
T (x) = max

(
1− T

|x|
, 0
)
x.

80 CHAPTER 5. DENOISING WITH THRESHOLDING

Figure 5.21: Left: semi-soft thresholder, right: Stein thresholder.

Figure 5.22: Left: image of SNR with respect to the parameters µ and T/σ, right: curve of SNR
with respect to µ using the best T/σ for each µ.

The advantage of the Stein thresholder with respect to the soft thresholding is that

|SStein
T (x)− x| → 0 whereas |S1

T (x)− x| → T,

where x → ±∞. This means that Stein thresholding does not suffer from the bias of soft thresh-
olding.

For translation invariant thresholding, Stein and hard thresholding perform similarly on natural
images.

5.3.6 Block Thresholding

The non-linear thresholding method presented in the previous section are diagonal estimators,
since they operate a coefficient-by-coefficient attenuation

f̃ =
∑
m

AqT (〈f, ψm〉)〈f, ψm〉ψm

where

AqT (x) =

 max(1− x2/T 2, 0) for q = Stein
max(1− |x|/T, 0) for q = 1 (soft)
1|x|>T for q = 0 (hard)

Block thresholding takes advantage of the statistical dependancy of wavelet coefficients, by com-
puting the attenuation factor on block of coefficients. This is especially efficient for natural images,

5.3. NON-LINEAR DENOISING USING THRESHOLDING 81

Figure 5.23: SNR curves with respect to T/σ for Stein threhsolding.

where edges and geometric features create clusters of high magnitude coefficients. Block decisions
also help to remove artifacts due to isolated noisy large coefficients in regular areas.

The set of coefficients is divided into disjoint blocks, and for instance for 2D wavelet coefficients

{(j, n, ω)}j,n,ω =
⋃
k

Bk,

where each Bk is a square of s×s coefficients, where the block size s is a parameter of the method.
Figure 5.24 shows an example of such a block.

The block energy is defined as

Bk =
1
s2

∑
m∈Bk

|〈f, ψm〉|2,

and the block thresholding
f̃ =

∑
m

Sblock,q
T (〈f, ψm〉)ψm

makes use of the same attenuation for all coefficients within a block

∀m ∈ Bk, Sblock,q
T (〈f, ψm〉) = AqT (Ek)〈f, ψm〉.

for q ∈ {0, 1, stein}. Figure 5.24 shows the effect of this block attenuation, and the corresponding
denoising result.

Figure 5.24: Left: wavelet coefficients, center: block thresholded coefficients, right: denoised image.

Figure 5.25, left, compares the three block thresholding obtained for q ∈ {0, 1, stein}. Nu-
merically, on natural images, Stein block thresholding gives the best results. Figure 5.25, right,
compares the block size for the Stein block thresholder. Numerically, for a broad range of images,
a value of s = 4 works well.

82 CHAPTER 5. DENOISING WITH THRESHOLDING

Figure 5.25: Curve of SNR with respect to T/σ (left) and comparison of SNR for different block
size (right).

Figure 5.26 shows a visual comparison of the denoising results. Block stein thresholding of
orthogonal wavelet coefficients gives a result nearly as good as a translation invariant wavelet hard
thresholding, with a faster algorithm. The block thresholding strategy can also be applied to
wavelet coefficients in translation invariant tight frame, which produces the best results among all
denoisers detailed in this book.

Code 14 implement this block thresholding.

SNR=23.4dB 22.8dB 23.8dB

Figure 5.26: Left: translation invariant wavelet hard thresholding, center: block orthogonal Stein
thresholding, right: block translation invariant Stein thresholding.

One should be aware that more advanced denoisers use complicated statistical models that
improves over the methods proposed in this book, see for instance [23].

5.4 Data-dependant Noises

For many imaging devices, the variance of the noise that perturbs f0[n] depends on the value
of f0[n]. This is a major departure from the additive noise formation model considered so far. We
present here two popular examples of such non-additive models.

5.4.1 Poisson Noise

Many imaging devices sample an image through a photons counting operation. This is for
instance the case in digital camera, confocal microscopy, TEP and SPECT tomography.

5.4. DATA-DEPENDANT NOISES 83

n = size(f,1);
% Forward wavelet transform.
fw = perform_wavelet_transf(f,j0,+1);
% Compute indexing of the blocks.
[dX,dY,X,Y] = ndgrid(0:s−1,0:s−1,1:s:n−s+1,1:s:n−s+1);
I = X+dX + (Y+dY−1)*n;
% Extract the blocks
H = reshape(fw(I(:)),size(I));
% Compute the average energy of each block, and duplicate.
v = mean(mean(abs(H).^2,1),2);
v = repmat(max3(v,1e−15), [w w]);
% Stein threshold the blocks.
HT = max3(1−T^2*v.^(−1),0) .* H;
% Reconstruct the thresholded coefficients.
fw(I(:)) = HT(:);
% Inverse wavelet transform.
f1 = perform_wavelet_transf(fw,j0,−1);

Matlab code 14: Denoising by Stein block thresholding. Input: noisy image f, coarse scale j0,
threshold T, size s of the blocks, output: denoised image f1.
Poisson model. The uncertainty of the measurements for a quantized unknown image f0[n] ∈ N
is then modeled using a Poisson noise distribution

f [n] ∼ P(λ) where λ = f0[n] ∈ N,

and where the Poisson distribution P(λ) is defined as

P(f [n] = k) =
λke−λ

k!

and thus varies from pixel to pixel. Figure 5.27 shows examples of Poisson distributions.

Figure 5.27: Poisson distributions for various λ.

One has
E(f [n]) = λ = f0[n] and Var(f [n]) = λ = f0[n]

so that the denoising corresponds to estimating the mean of a random vector from a single observa-
tion, but the variance now depends on the pixel intensity. This shows that the noise level increase
with the intensity of the pixel (more photons are coming to the sensor) but the relative variation
(f [n]− f0[n])/f0[n] tends to zero in expectation when f0[n] increases.

Figure 5.28 shows examples of a clean image f0 quantized using different values of λmax and
perturbed with the Poisson noise model.

Variance stabilization. Applying thresholding estimator

D(f) =
∑
m

SqT (〈f, ψm〉)ψm

84 CHAPTER 5. DENOISING WITH THRESHOLDING

λmax = 5 λmax = 50 λmax = 50 λmax = 100

Figure 5.28: Noisy image with Poisson noise model, for various λmax = maxn f0[n].

to f might give poor results since the noise level fluctuates from point to point, and thus a single
threshold T might not be able to capture these variations. A simple way to improve the thresholding
results is to first apply a variance stabilization non-linearity φ : R → R to the image, so that φ(f)
is as close as possible to an additive Gaussian white noise model

φ(f) ≈ φ(f0) + w (5.8)

where w[n] ∼ N (0, σ) is a Gaussian white noise of fixed variance σ2.
Perfect stabilization is impossible, so that (5.8) only approximately holds for a limited intensity

range of f0[n]. Two popular variation stabilization functions for Poisson noise are the Anscombe
mapping

φ(x) = 2
√
x+ 3/8

and the mapping of Freeman and Tukey

φ(x) =
√
x+ 1 +

√
x.

Figure 5.29 shows the effect of these variance stabilizations on the variance of φ(f).

1 2 3 4 5 6 7 8 9 10

0.75

0.8

0.85

0.9

0.95

1

1.05

Figure 5.29: Comparison of variariance stabilization: display of Var(φ(f [n])) as a function of f0[n].

A variance stabilized denoiser is defined as

∆stab,q(f) = φ−1(
∑
m

SqT (〈φ(f), ψm〉)ψm)

where φ−1 is the inverse mapping of φ.
Figure 5.30 shows that for moderate intensity range, variance stabilization improves over non-

stabilized denoising.

5.5 Multiplicative Noise
Multiplicative image formation. A multiplicative noise model assumes that

f [n] = f0[n]w[n]

5.5. MULTIPLICATIVE NOISE 85

Figure 5.30: Left: noisy image, center: denoising without variance stabilization, right: denoising
after variance stabilization.

where w is a realization of a random vector with E(w) = 1. Once again, the noise level depends
on the pixel value

E(f [n]) = f0[n] and Var(f [n]) = f0[n]2σ2 where σ2 = Var(w).

Such a mutiplicative noise is a good model for SAR satellite imaging, where f is obtained by
averaging S images

∀ 0 6 s < K, f (s)[n] = f0[n]w(s)[n] + r(s)[n]

where r(s) is a Gaussian white noise, and w(s)[n] is distributed according to a one-sided exponential
distribution

P(w(s)[n] = x) ∝ e−x Ix>0.

For K large enough, averaging the images cancels the additive noise and one obtains

f [n] =
1
K

K∑
s=1

f (s)[n] ≈ f0[n]w[n]

where w is distributed according to a Gamma distribution

w ∼ Γ(σ = K− 1
2 , µ = 1) where P(w = x) ∝ xK−1e−Kx,

One should note that increasing the value of K reduces the overall noise level.

Figure 5.31: Noisy images with multiplicative noise, with varying σ.

Figure ?? shows an example of such image formation for a varying number K = 1/σ2 of
averaged images.

A simple variance stabilization transform is

φ(x) = log(x)− c

where
c = E(log(w)) = ψ(K)− log(K) where ψ(x) = Γ′(x)/Γ(x)

86 CHAPTER 5. DENOISING WITH THRESHOLDING

and where Γ is the Gamma function that generalizes the factorial function to non-integer. One
thus has

φ(f)[n] = φ(f0)[n] + z[n],

where z[n] = log(w)− c is a zero-mean additive noise.

0 0.5 1 1.5 2 2.5 −1.5 −1 −0.5 0 0.5 1 1.5

Figure 5.32: Histogram of multiplicative noise before (left) and after (right) stabilization.

Figure 5.32 shows the effect of this variance stabilization on the repartition of w and z.
Figure 5.33 shows that for moderate noise level σ, variance stabilization improves over non-

stabilized denoising.

Figure 5.33: Left: noisy image, center: denoising without variance stabilization, right: denoising
after variance stabilization.

Chapter 6

Denoising with Variational
Minimization

To solve denoising and more general inverse problems, variational methods consider a prior J
that assigns a score J(f) to each signal or image f . In this Section, we focus in particular on
images, d = 2, and the proposed variational priors are easily extended to arbitrary dimensions.

6.1 Sobolev and Total Variation Priors

The simplest prior are obtained by integrating local differential quantity over the image. They
corresponds to norms in functional spaces that imposes some smoothness on the signal of the
image. We detail here the Sobolev and the total variation priors, that are the most popular in
image processing.

6.1.1 Continuous Priors

In the following, we consider either continuous functions f ∈ L2([0, 1]2) or discrete vectors
f ∈ RN , and consider continuous priors and there discrete counterparts in Section 6.1.2.

Sobolev prior. The prior energy J(f) ∈ R is intended to be low for images in a class f ∈ Θ. The
class of uniformly smooth functions detailed in Section 4.2.1 corresponds to functions in Sobolev
spaces. A simple prior derived from this Sobolev class is thus

JSob(f) =
1
2
||f ||2Sob =

1
2

∫
||∇f(x)||2dx, (6.1)

where ∇f is the gradient in the sense of distributions.

Total variation prior. To take into account discontinuities in images, one considers a total
variation energy, introduced in Section 4.2.3. It was introduced for image denoising by Rudin,
Osher and Fatemi [25]

The total variation of a smooth image f is defined as

JTV(f) = ||f ||TV =
∫
||∇xf ||dx. (6.2)

This energy extends to non-smooth functions of bounded variations f ∈ BV([0, 1]2). This class
contains indicators functions f = 1Ω of sets Ω with a bounded perimeter |∂Ω|.

The total variation norm can be computed alternatively using the co-area formula (4.12), which
shows in particular that ||1Ω||TV = |∂Ω|.

87

88 CHAPTER 6. DENOISING WITH VARIATIONAL MINIMIZATION

6.1.2 Discrete Priors
An analog image f ∈ L2([0, 1]2) is discretized through an acquisition device to obtain a discrete

image f ∈ RN . Image processing algorithms work on these discrete data, and we thus need to
define discrete priors for finite dimensional images.

Discrete gradient. Discrete Sobolev and total variation priors are obtained by computing finite
differences approximations of derivatives, using for instance forward differences

δ1f [n1, n2] = f [n1 + 1, n2]− f [n1, n2]
δ2f [n1, n2] = f [n1, n2 + 1]− f [n1, n2],

and one can use higher order schemes to process more precisely smooth functions. One should be
careful with boundary conditions, and we consider here for simplicity periodic boundary conditions,
which correspond to computing the indexes ni+1 modulo N . More advanced symmetric boundary
conditions can be used as well to avoid boundary artifacts.

A discrete gradient is defined as

∇f [n] = (δ1f [n], δ2f [n]) ∈ R2

which corresponds to a mapping from images to vector fields

∇ : RN −→ RN×2.

Figure 6.1 shows examples of gradient vectors. They point in the direction of the largest slope of
the function discretized by f . Figure 6.2 shows gradients and their norms displayed as an image.
Regions of high gradients correspond to large intensity variations, and thus typically to edges or
textures.

Figure 6.1: Discrete gradient vectors.

Discrete divergence. One can also use backward differences,

δ̃1f [n1, n2] = f [n1, n2]− f [n1 − 1, n2]

δ̃2f [n1, n2] = f [n1, n2]− f [n1, n2 − 1].

They are dual to the forward differences, so that

δ∗i = −δ̃i,

which means that
∀ f, g ∈ RN , 〈δif, g〉 = −〈f, δ̃ig〉,

which is a discrete version of the integration by part formula∫ 1

0

f ′g = −
∫ 1

0

fg′

6.1. SOBOLEV AND TOTAL VARIATION PRIORS 89

for smooth periodic functions on [0, 1]
A divergence operator is defined using backward differences,

div(v)[n] = δ̃1v1[n] + δ̃2v2[n],

and corresponds to a mapping from vector fields to images

div : RN×2 −→ RN .

It is related to the dual of the gradient

div = −∇∗

which means that

∀ f ∈ RN , ∀ v ∈ RN ×2, 〈∇f, v〉RN×2 = −〈f, div(v)〉RN

which corresponds to a discrete version of the divergence theorem.

Image f ∇f ||∇f ||

Figure 6.2: Discrete operators.

Discrete laplacian. A general definition of a Laplacian is

∆f = div(∇f),

which corresponds to a semi-definite negative operator.
For discrete images, and using the previously defined gradient and divergence, it is a local high

pass filter
∆f [n] =

∑
p∈V4(n)

f [p]− 4f [n], (6.3)

that approximates the continuous second order derivative

∂2f

∂x2
1

(x) +
∂2f

∂x2
2

≈ N2∆f [n] for x = n/N.

Lapalacian operators thus correspond to filterings. A continuous Laplacian is equivalently
defined over the Fourier domain in diagonal form as

g = ∆f =⇒ ĝ(ω) = ||ω||2f̂(ω)

and the discrete Laplacian (6.3) as

g = ∆f =⇒ ĝ[ω] = ρ[ω]2f̂(ω) where ρ[ω]2 = sin
(π
N
ω1

)2

+ sin
(π
N
ω2

)2

. (6.4)

90 CHAPTER 6. DENOISING WITH VARIATIONAL MINIMIZATION

Discrete energies. A discrete Sobolev energy is obtained by using the `2 norm of the discrete
gradient vector field

JSob(f) =
1
2

∑
n

(δ1f [n])2 + (δ2f [n])2 =
1
2
||∇f ||2. (6.5)

Similarly, a discrete TV energy is defined as the `1 norm of the gradient field

JTV(f) =
∑
n

√
(δ1f [n])2 + (δ2f [n])2 = ||∇f ||1 (6.6)

where the `1 norm of a vector field v ∈ RN×2 is

||v||1 =
∑
n

||v[n]|| (6.7)

where v[n] ∈ R2.

6.2 PDE and Energy Minimization
Image smoothing is obtained by minimizing the prior using a gradient descent.

6.2.1 General Flows
The gradient of the prior J : RN → R is a vector gradJ(f). It describes locally up to the first

order the variation of the prior

J(f + ε) = J(f) + 〈ε, gradJ(f)〉+ o(||ε||2).

If J is a smooth function of the image f , a discrete energy minimization is obtained through a
gradient descent

f (k+1) = f (k) − τ gradJ(f (k)), (6.8)

where the step size τ must be small enough to guarantee convergence.
For infinitesimal step size τ , one replaces the discrete parameter k by a continuous time, and

the flow
t > 0 7−→ ft ∈ RN

solves the following partial differential equation

∂ft
∂t

= − gradJ(ft) and f0 = f. (6.9)

The gradient descent can be seen as an explicit discretization in time of this PDE at times tk = kτ .

6.2.2 Heat Flow
The heat flow corresponds to the instantiation of the generic PDE (6.9) to the case of the

Sobolev energies JSob(f) defined for continuous function in (6.1) and for discrete images in (6.5).
Since it is a quadratic energy, its gradient is easily computed

J(f + ε) =
1
2
||∇f +∇ε||2 = J(f)− 〈∆f, ε〉+ o(||ε||2),

so that
gradJSob(f) = −∆f.

Figure 6.4, left, shows an example of Laplacian. It is typically large (positive or negative) near
edges.

The heat flow is thus

∂ft
∂t

(x) = −(gradJ(ft))(x) = ∆ft(x) and f0 = f. (6.10)

6.2. PDE AND ENERGY MINIMIZATION 91

Figure 6.3: Display of ft for increasing time t for heat flow (top row) and TV flow (bottom row).

div(∇f) div(∇f/||∇f ||)

Figure 6.4: Discrete Laplacian and discrete TV gradient.

Continous in space. For continuous images and an unbounded domain R2, the PDE (6.10) has
an explicit solution as a convolution with a Gaussian kernel of increasing variance as time increases

ft = f ? ht where ht(x) =
1

4πt
e−

−||x||2
4t . (6.11)

This shows the regularizing property of the heat flow, that operates a blurring to make the image
more regular as time evolves.

Discrete in space. The discrete Sobolev energy (6.5) minimization defined a PDE flow that is
discrete in space

∂ft
∂t

[n] = −(gradJ(ft))[n] = ∆ft[n].

It can be further discretized in time as done in (6.8) and leads to a fully discrete flow

f (k+1)[n] = f (k)[n] + τ
(∑
p∈V4(n)

f [p]− 4f [n]
)

= f ? h[n]

where V4(n) are the four neighbor to a pixel n. The flow thus corresponds to iterative convolutions

f (k) = f ? h ? . . . ? h = f ?k h.

where h is a discrete filter.
It can be shown to be stable and convergent if τ < 1/4.

92 CHAPTER 6. DENOISING WITH VARIATIONAL MINIMIZATION

6.2.3 Total Variation Flows
Total variation gradient. The total variation energy JTV, both continuous (6.2) and discrete
(6.6) is not a smooth function of the image. For instance, the discrete JTV is non-differentiable at
an image f such that there exists a pixel n where ∇f [n] = 0.

If ∇f [n] 6= 0, one can compute the gradient of the TV energy specialized at pixel n as

(gradJ(f))[n] = −div
(
∇f
||∇f ||

)
[n]

which exhibits a division by zero singularity for a point with vanishing gradient. Figure 6.4 shows
an example of TV gradient, which appears noisy in smooth areas, because ||∇f [n]|| is small in such
regions.

This non-differentiabilty makes impossible the definition of a gradient descent and a TV flow.

Regularized total variation. To avoid this issue, one can modify the TV energy, and define a
smoothed TV prior

JεTV(f) =
∑
n

√
ε2 + ||∇f [n]||2 (6.12)

where ε > 0 is a small regularization parameter. Figure 6.5 shows this effect of this regularization
on the absolute value function.

ε = 0.1 ε = 0.01

Figure 6.5: Regularized absolute value x 7→
√
x2 + ε2.

This smoothed TV energy is a differentiable function of the image, and its gradient is

gradJεTV(f) = −div

(
∇f√

ε2 + ||∇f ||2

)
. (6.13)

One can see that this smoothing interpolate between TV and Sobolev, as

gradεf ∼ −∆/ε when ε→ +∞.

Figure 6.6 shows the evolution of this gradient for several value of the smoothing parameter.

Regularized total variation flow. The smoothed total variation flow is then defined as

∂ft
∂t

= div

(
∇ft√

ε2 + ||∇ft||2

)
. (6.14)

Choosing a small ε makes the flow closer to a minimization of the total variation, but makes the
computation unstable.

In practice, the flow is computed with a discrete gradient descent (6.8). For the smoothed total
variation flow to converge, one needs to impose that τ < ε/4, which shows that being more faithful
to the TV energy requires smaller time steps and thus slower algorithms.

6.3. SPARSITY PRIORS 93

ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.5

Figure 6.6: Regularized gradient norm
√
||∇f(x)||2 + ε2.

Figure 6.3 shows a comparison between the heat flow and the total variation flow for a small
value of ε. This shows that the TV flow smooth less the edges than heat diffusion, which is
consistent with the ability of the TV energy to better characterize sharp edges.

Table 15 details the implementation of this smoothed TV flow.

% step size
tau = epsilon/5;
% number of iterations to reach T.
niter = round(T/tau);
% initial solution for time t=0.
ftv = f;
for i=1:niter

% gradient and norm of gradient
Gr = grad(ftv); d = sqrt(sum3(Gr.^2,3));
G = −div(Gr ./ repmat(sqrt(epsilon^2 + d.^2) , [1 1 2]));
% descent step
ftv = ftv − tau*G;

end

Matlab code 15: Smoothed total variation flow, computed by gradient descent. The input is the
image f, the output is ftv, and approximation of the solution fT of the smoothed TV flow (6.14) at
time t = T . The regularization parameter ε is stored in epsilon.

6.2.4 PDE Flows for Denoising
PDE flows can be used to remove noise from an observation f = f0 + w. As detailed in

Section 5.1.2 a simple noise model assumes that each pixel is corrupted with a Gaussian noise
w[n] ∼ N (0, σ), and that these perturbations are independent (white noise).

The denoising is obtained using the PDE flow within initial image f at time t = 0

∂ft
∂t

= − gradft
J and ft=0 = f.

An estimator f̃ = ft0 is obtained for a well chose t = t0. Figure 6.7 shows examples of Sobolev
and TV flows for denoising.

Since ft converges to a constant image when t→ +∞, the choice of t0 corresponds to a tradeoff
between removing enough noise and not smoothing too much the edges in the image. This is
usually a difficult task. During simulation, if one has access to the clean image f0, one can monitor
the denoising error ||f0− ft|| and choose the t = t0 that minimizes this error. Figure 6.10, top row,
shows an example of this oracle estimation of the best stopping time.

6.3 Sparsity Priors

6.3.1 Ideal sparsity prior.
As detailed in Chapter 4, it is possible to use an orthogonal basis B = {ψm}m to efficiently

approximate an image f in a given class f ∈ Θ with a few atoms from B.

94 CHAPTER 6. DENOISING WITH VARIATIONAL MINIMIZATION

Figure 6.7: Denoising using ft displayed for various time t for Sobolev (top) and TV (bottom)
flows.

To measure the complexity of an approximation with B, we consider the `0 prior, which counts
the number of non-zero coefficients in B

J0(f) = # {m \ 〈f, ψm〉 6= 0} = ||a||0 where a[m] = 〈f, ψm〉.

We have introduced the `0 pseudo-norm ||a||0, which we treat here as an ideal sparsity measure for
the coefficients a of f in B.

Natural images are not exactly composed of a few atoms, but they can be well approximated by
a function fM with a small ideal sparsity M = J0(f). In particular, the best M -term approximation
defined in (4.3) is defined by

fM =
∑

|〈f, ψm〉|>T

〈f, ψm〉ψm where M = # {m \ |〈f, ψm〉| > T} .

As detailed in Section 4.2, discontinuous images with bounded variation have a fast decay of the
approximation error ||f − fM ||. Natural images f are well approximated by images with a small
value of the ideal sparsity prior J0.

Figure 6.8 shows an examples of decomposition of a natural image in a wavelet basis, ψm = ψωj,n
m = (j, n, ω). This shows that most 〈f, ψm〉 are small, and hence the decomposition is quite sparse.

Image f Coefficients 〈f, ψm〉

Figure 6.8: Wavelet coefficients of natural images are relatively sparse.

6.4. REGULARIZATION FOR DENOISING 95

6.3.2 Convex relaxation
Unfortunately, the ideal sparsity prior J0 is difficult to handle numerically because J0(f) is not

a convex function of f . For instance, if f and g have non-intersecting supports of there coefficients
in B, then J0((f + g)/2) = J0(f) + J0(g), which shows the highly non-convex behavior of J0.

This ideal sparsity J0 is thus not amenable to minimization, which is an issue to solve general
inverse problems considered in Section 7.

We consider a family of `q priors for q > 0, intended to approximate the ideal prior J0

Jq(f) =
∑
m

|〈f, ψm〉|q.

As shown in Figure 6.9, the unit balls in R2 associated to these priors are shrinking toward the
axes, which corresponds to the unit ball for the `0 pseudo norm. In some sense, the Jq priors are
becoming closer to J0 as q tends to zero, and thus Jq favors sparsity for small q.

q = 1q = 0 q = 2q = 1 5.q = 0 5.

Figure 6.9: `q balls {x \ Jq(x) 6 1} for varying q.

The prior Jq is convex if and only if q > 1. To reach the highest degree of sparsity while using
a convex prior, we consider the `1 sparsity prior J1, which is thus defined as

J1(f) = ||(〈f, ψm〉)||1 =
∑
m

|〈f, ψm〉|. (6.15)

In the following, we consider discrete orthogonal bases B = {ψm}N−1
m=0 of RN .

6.4 Regularization for Denoising
Instead of performing a gradient descent flow for denoising as detailed in Section 6.2.4 and select

a stopping time, one can formulate an optimization problem. The estimator is then defined as a
solution of this optimization. This setup has the advantage as being well defined mathematically
even for non-smooth priors such as the TV prior JTV or the sparsity prior J1. Furthermore, this
regularization framework is also useful to solve general inverse problems as detailed in Chapter 7.

6.4.1 Regularization
Given some noisy image f = f0 + w of N pixels and a prior J , we consider the convex opti-

mization problem

f?λ ∈ argmin
g∈RN

1
2
||f − g||2 + λJ(g), (6.16)

where λ > 0 is a Lagrange multiplier parameter that weights the influence of the data fitting term
||f − g||2 and the regularization term J(g).

If one has at his disposal a clean original image f0, one can minimize the denoising error
||f?λ − f0||, but it is rarely the case. In practice, this parameter should be adapted to the noise level
and to the regularity of the unknown image f0, which might be a non trivial task.

We note that since we did not impose J to be convex, the problem (6.16) might have several
optimal solutions.

96 CHAPTER 6. DENOISING WITH VARIATIONAL MINIMIZATION

Noisy f Sobolev flow TV flow

Sobolev reg TV reg TI wavelets

Figure 6.10: Denoising using PDE flows and regularization.

An estimator is thus defined as
f̃ = f?λ

for a well chosen λ.
If J is differentiable and convex, one can compute the solution of (6.16) through a gradient

descent
f (k+1) = f (k) − τ

(
f (k) − λ gradJ(f (k)

)
(6.17)

where the descent step size τ > 0 should be small enough. This gradient descent is similar to the
time-discretized minimization flow (6.8), excepted that the data fitting term prevent the flow to
converge to a constant image.

Unfortunately, priors such as the total variation JTV or the sparsity J1 are non-differentiable.
Some priors such as the ideal sparsity J0 might even be non-convex. This makes the simple gradient
descent not usable to solve for (6.16). In the following Section we show how to compute f?λ for
several priors.

6.4.2 Sobolev Regularization

The discrete Sobolev prior defined in (6.5) is differentiable, and the gradient descent (6.17)
reads

f (k+1) = (1− τ)f (k) + τf − τλ∆J(f (k).

Since J(f) = ||∇f ||2 is quadratic, one can use a conjugate gradient descent, which converges faster.
The solution f?λ can be computed in closed form as the solution of a linear system

f?λ = (IdN − λ∆)−1f,

which shows that the regularization (6.16) is computing an estimator that depends linearly on the
observations f .

6.4. REGULARIZATION FOR DENOISING 97

Sobolev flow TV flow

Sobolev regularization TV regularization

Figure 6.11: SNR as a function of time t for flows (top) and λ for regularization (bottom).

If the differential operators are computed with periodic boundary conditions, this linear system
can be solved exactly over the Fourier domain

f̂?λ [ω] =
1

1 + λρ2
ω

f̂ [ω] (6.18)

where ρω depends on the discretization of the Laplacian, see for instance (6.4).
Equation (7.17) shows that denoising using Sobolev regularization corresponds to a low pass

filtering, whose strength is controlled by λ. This should be related to the solution (6.11) of the heat
equation, which also corresponds to a filtering, but using a Gaussian low pass kernel parameterized
by its variance t2.

This Sobolev regularization denoising is a particular case of the linear estimator considered in
Section 5.2. The selection of the parameter λ is related to the selection of an optimal filter as
considered in Section 5.2.2, but with the restriction that the filter is computed in a parametric
family.

6.4.3 TV Regularization
The total variation prior JTV defined in (6.6) is non-differentiable. One can either use a

smoothed approximation of the prior, or use an optimization algorithm not based on a gradient
descent.

Smoothed TV. The TV prior can be approximated to obtain the prior JεTV(g) defined in (6.12),
which is differentiable with respect to g. Using the gradient of this prior defined in (6.13), one
obtains the following instantiation of the gradient descent (6.17)

f (k+1) = (1− τ)f (k) + τf + λτ div

(
∇ft√

ε2 + ||∇ft||2

)
. (6.19)

which converge to the unique minimizer f?λ of (6.16).

98 CHAPTER 6. DENOISING WITH VARIATIONAL MINIMIZATION

Chambolle’s algorithm. Chambolle in [5] detail an algorithm to minimize exactly the TV
denoising problem

f?λ = argmin
g∈RN

1
2
||f − g||2 + λ||g||TV. (6.20)

It uses a relationship between the vectorial `1 and `∞ norms

||v||1 =
N−1∑
m=0

||v[m]|| and ||v||∞ = max
06m<N

||v[m]||

where each v[m] ∈ R2 and v ∈ RN×2. One has

||v||1 = max
||w||∞61

〈w, u〉

which allows one to re-write the optimization (6.20) as

min
g∈RN

max
||w||∞61

1
2
||f − g||2 + λ〈w, ∇g〉.

Exchanging the roles of the min and the max, one proves that the solution of (6.20) is re-written
as

f?λ = f + λ div(w?) (6.21)

where
w? ∈ argmin

||w||∞61

||f + λ div(w?)||2. (6.22)

The convex optimization problem (6.22) computes a dual vector field w? ∈ RN×2, from which the
denoised image is recovered using (6.21).

The dual problem (6.22) is the minimization of a quadratic functional subject to a convex `∞
constraint. It can thus be solved using for instance a projected gradient descent

w(k+1)[m] =
w̃(k)[m]

max(|w̃(k)[m]|, 1)
where w̃(k) = w(k) + τ∇(f/λ+ div(w(k))).

If the gradient step size satisfy 0 < τ < 1/4, one can prove that

f + λ div(w(k)) −→ f?λ when k → +∞.

% Initialization of the dual variables.
G = zeros(n,n,2);
for i=1:niter

% Gradient of the energy
dG = grad(div(G) − f/lambda);
% gradient descent
G = G + tau*dG;
% Projection on Linfty constraints
d = repmat(sqrt(sum(G.^2,3)), [1 1 2]); % norm of the vectors
G = G ./ max(d,ones(n,n,2));

end
% Final solution from the dual variables.
ftv = f−lambda*div(G);

Matlab code 16: Total variation regularization computed using Chambolle’s algorithm. The input
is the noisy image f, the output is ftv, the solution fλ of (6.20). The regularization parameter λ
is stored in lambda.

6.4. REGULARIZATION FOR DENOISING 99

6.4.4 Sparse Regularization and Thresholding
Given some orthogonal basis {ψm}m of RN , the denoising by regularization (6.16) is written

using the sparsity J0 and J1 as

f?λ,q = argmin
g∈RN

1
2
||f − g||2 + λJq(f)

for q = 0 or q = 1. It can be re-written in the orthogonal basis as

f?λ,q =
∑
m

a?λ,q[m]ψm

a?λ,q = argmin
b∈RN

∑
m

1
2
|a[m]− b[m]|2 + λφq(b[m])

where a[m] = 〈f, ψm〉, and with

φ1(x) = |x| and φ0(x) =
{

0 if x = 0,
1 otherwise.

Each coefficients of the denoised image is the solution of

a?λ,q[m] = argmin
α∈R

1
2
|a[m]− β|2 + λφq(β)

and one can shows that this optimization is solved exactly in closed form using thresholding

a?λ,q[m] = SqT (a[m]) where
{
T =

√
2λ for q = 0,

T = λ for q = 1,
(6.23)

where S0
T is the hard thresholding introduced in (5.3), and S1

T is the soft thresholding introduced
in (5.4).

One thus has
fλ,q =

∑
m

SqT (〈f, ψm〉)ψm.

As detailed in Section 5.3, these denoising methods has the advantage that the threshold is simple to
set for Gaussian white noise w of variance σ2. Theoritical values indicated that T =

√
2 log(N)σ

is asymptotically optimal, see Section 5.3.3. In practice, one should choose T ≈ 3σ for hard
thresholding (`0 regularization), and T ≈ 3σ/2 for soft thresholding (`1 regularization), see Figure
5.14.

100 CHAPTER 6. DENOISING WITH VARIATIONAL MINIMIZATION

Chapter 7

Inverse problems

7.1 Inverse Problems Regularization
Increasing the resolution of signals and images requires to solve an ill posed inverse problem.

This corresponds to inverting a linear measurement operator that reduces the resolution of the
image. This chapter makes use of convex regularization introduced in Chapter 6 to stabilize this
inverse problem.

7.1.1 Inverse Problem in Imaging
Solving a discrete inverse problems corresponds to recovering a high resolution signal or image

f0 ∈ RN from a small number of P noisy measurements

y = Φf0 + w ∈ RP .

Since P � N , the linear operator Φ : RN 7→ RP is not invertible, and has a large kernel of
dimension N − P .

The difficulty of this inversion is further increased by the addition of some measurement noise
w ∈ RP . The simplest noise model assume that w is a Gaussian white noise of variance σ2, see
Section 5.1.2.

Denoising. The case of the identity operator Φ = IdN , P = N corresponds to the classical
denoising problem, already treated in Chapters 5 and 6.

For a general operator Φ, the recovery of f0 is more challenging, and this requires to perform
both an inversion and a denoising. For many problem, this two goals are in contradiction, since
usually inverting the operator increases the noise level.

De-blurring. This is for instance the case for the deblurring problem, where Φ is a translation
invariant operator, that corresponds to a low pass filtering with some kernel h

Φf = f ? h. (7.1)

In this case N = P , and this operator is invertible if

∀ω, ĥ[ω] 6= 0,

and applying the inverse filter over the Fourier domain computes f+ ∈ RN defined as

f̂+[ω] = ŷ[ω]/ĥ[ω] = f̂0[ω] + ŵ[ω]/ĥ[ω]. (7.2)

For low pass filter, the Fourier transform ĥ[ω] is small for high frequency, and the estimation f+

is bad because of high frequency explosion of the noise.
This shows the necessity to replace the brute force inversion (7.2) by a more gentle regulariza-

tion. Doing so performs a denoising that reduces the performance of the inversion but is mandatory
to avoid the noise explosion at high frequencies.

101

102 CHAPTER 7. INVERSE PROBLEMS

Super-resolution. Super-resolution corresponds to an even more ill-posed inverse problem,
where the acquisition blur is followed by a coarse sub-sampling

Φf = f ? h ↓k, where (a ↓k)[n] = a[nk] (7.3)

so that P = N/kd where d is the dimension of the data (d = 2 for images). Figure 7.1, middle,
shows an example of a low resolution image Φf0.

Inverting the operator defined in (7.3) has important industrial application to upsample the
content of digital photos and to compute high definition videos from low definition videos.

Inpainting. Inpainting corresponds to interpolating missing pixels in an image. This is modeled
by a diagonal operator over the spacial domain

(Φf)(x) =
{

0 if x ∈ Ω,
f(x) if x /∈ Ω. (7.4)

where Ω ⊂ {0, . . . , N − 1} is a set of missing pixels, and P = N − |Ω|. Figure 7.1, right, shows an
example of damaged image Φf0.

Original f0 Low resolution Φf0 Masked Φf0

Figure 7.1: Example of inverse problem operators.

7.1.2 Inverse Problem Regularization
The ill-posed problem of recovering an approximation of the high resolution image f0 ∈ RN

from noisy measures y ∈ RP is regularized by solving a convex optimization problem

f? ∈ argmin
f∈RN

1
2
||y − Φf ||2 + λJ(f) (7.5)

where ||y − Φf ||2 is the data fitting term and J(f) is a convex prior.
The Lagrange multiplier λ weights the importance of these two terms, and is in practice difficult

to set. Simulation can be performed on high resolution signal f0 to calibrate the multiplier by
minimizing the super-resolution error ||f0−f̃ ||, but this is usually difficult to do on real life problems.

In the case where there is no noise, σ = 0, the Lagrange multiplier λ should be set as small
as possible. In the limit where λ → 0, the unconstrained optimization problem (7.5) becomes a
constrained optimization

f? = argmin
f∈RN ,Φf=y

J(f). (7.6)

7.1.3 L2 regularization
The simplest prior, that avoids the exposition of the noise during the inversion, is the `2 norm

J(f) =
1
2
||f ||2

7.1. INVERSE PROBLEMS REGULARIZATION 103

that ensures that the recovered signal or image has a bounded energy.
In the noise-free setting, one obtains the pseudo inverse operator that compute the solution f?

f? = argmin
Φf=y

||f ||2 = Φ+y where Φ+ = Φ∗(ΦΦ∗)−1. (7.7)

It corresponds to inverting the operator on the complementary of its kernel.
For noisy measures, on performs a quadratic regularization

f? = argmin
f∈RN

||y − Φf ||2 + λ||f ||2

whose closed form solution is obtained by solving a regularized (non-singular) linear system

f? = (Φ∗Φ + λIdN)−1Φ∗y. (7.8)

7.1.4 Sobolev Regularization

The discrete Sobolev prior introduced in (6.5) regularizes the inverse by computing a linear
denoising. This corresponds to minimizing

f? ∈ argmin
f∈RN

||y − Φf ||2 + λ||∇f ||2.

The solution depends linearly on the data

f? = (Φ∗Φ− λ∆)−1Φ∗y, (7.9)

and the parameter λ controls the amount of denoising.
The solutions of (7.8) and (7.9) depend linearly on the measures y, and can be computed

numerically using a conjugate gradient descent. For convolution operator, the solution can be
computed directly over the Fourier domain, see Section 7.2.1.

7.1.5 Total Variation Regularization

Exact total variation. The discrete total variation prior JTV(f) defined in (6.6) is a convex
but non differentiable function of the image f , so that the regularization problem (7.5)

f? ∈ argmin
f∈RN

1
2
||y − Φf ||2 + λ

∑
n

||∇f [n]|| (7.10)

cannot be solved using a gradient descent. Section 7.1.7 details a class of algorithm that can solve
(7.5) for both TV and sparse regularization. We note that since (7.5) is not a strictly convex, the
minimizer is not unique in general.

Smoothed total variation. One can use the smoothed total variation prior JεTV for some small
parameter ε > 0 and solve (7.5) using a gradient descent that generalize (6.19) for inverse problems

f (k+1) = f (k) − τΦ∗(Φf (k) − y) + λτ div

(
∇ft√

ε2 + ||∇ft||2

)

that converges to f? that minimizes (7.5) if

0 < τ < (||Φ∗Φ||+ 4/ε)−1.

104 CHAPTER 7. INVERSE PROBLEMS

7.1.6 Sparse Regularization
Sparse `1 regularization in an orthogonal basis {ψm}m of RN makes use of the J1 prior defined

in (6.15), so that the inversion is obtained by solving the following convex program

f? ∈ argmin
f∈RN

1
2
||y − Φf ||2 + λ

∑
m

|〈f, ψm〉|. (7.11)

This corresponds to the basis pursuit denoising for sparse approximation introduced by Chen,
Donoho and Saunders in [6]. The resolution of (7.11) can be perform using an iterative thresholding
algorithm as detailed in Section 7.1.7.

For noiseless measurements y = Φf0, one solves a constraint basis pursuit problem

f? ∈ argmin
Φf=y

∑
m

|〈f, ψm〉|.

This can be recasted as a convex linear program, which can in turn by solved by various solver
such as simplex, interior points, or Douglas-Rachford iterations.

Φf = y

f!

Φf = y

f! f!||Φf − y|| ! ε

min
Φf=y

||Ψ∗f ||1 min
Φf=y

||f ||2 min
||Φf=y||6ε

||Ψ∗f ||1

Figure 7.2: Geometry of convex optimizations.

7.1.7 Proximal Algorithms for TV and Sparsity
This section details an iterative algorithm that compute a solution of (7.5) for either the TV

prior J = JTV or the sparse `1 prior, which corresponds respectively to the minimizations (7.10)
and (7.11).

This algorithm was derived by several authors, among which [14, 11], and belongs to the general
family of forward-backward splitting in proximal iterations [8]. We note that faster algorithms can
be used, such as Nesterov scheme [22].

Surrogate functionals. The energy to minimize in (7.10) and (7.11) is written as

E(f) =
1
2
||Φf − y||2 + λJ(f).

The difficulty is the presence of the operator Φ in the `2 norm, which makes this problem signifi-
cantly more difficult than the simple denoising by regularization (6.16).

To derive an iterative algorithm, we modify the energy E(f) to obtain a surrogate functional
E(f, f (k)) whose minimization corresponds to a simpler denoising problem.

Given some guess f (k) ∈ RN of the solution f?, the surrogate functional is defined as

E(f, f (k)) = E(f)− 1
2
||Φf − Φf (k)||2 +

1
2τ
||f − f (k)||2.

One has
E(f, f (k)) > E(f) and E(f (k), f (k)) = E(f (k)) (7.12)

so that E(f, f (k)) is a proxy for the minimization of E(f).

7.1. INVERSE PROBLEMS REGULARIZATION 105

Proximal iterations. A proximal iterative algorithm computes

f (k+1) = argmin
f∈RN

E(f, f (k)).

Property (7.12) guarantees that E is decaying

E(f (k+1)) 6 E(f (k)).

Furtheremore, one has

E(f, f (k)) = C +
1
2τ
||f − f (k) + τΦ∗(Φf (k) − y)||2 + λ

∑
m

|〈f, ψm〉|

where C is independent of f . Defining a proximal operator

proxλJ(f̃) = argmin
f∈RN

1
2
||f̃ − f ||2 + λJ(f), (7.13)

that corresponds to the variational denoiser introduced in (6.16), one thus has

f (k+1) = proxλτJ
(
f̃ (k)

)
where f̃ (k) = f (k) − τΦ∗(Φf (k) − y).

One can prove, see [], that if τ < 2/||Φ∗Φ||S , then

f (k) → f?.

Noiseless case. If σ = 0, so that one observe noiseless measures y = Φf0, an heuristic to compute
approximately the solution f? of (7.6) is to use a decaying value of λ = λ(k) during the iterations.
One can for instance use λk = λmax/k, although there is no proof of convergence to f?.

constrained problem. The constrained problem

f?ε ∈ argmin
||Φf−y||6ε

∑
m

|〈f, ψm〉|.

is equivalent to the problem (7.5), in the sense that f? is a solution of (7.5) for a suitable value of
λ that depends on ε. Unfortunately, the correspondence between λ and ε is unknown and depends
on y.

An heuristic to automatically find this correspondence is to iteratively update the value of
λ = λ(k)

λ(k+1) = λ(k) ε

||Φf (k) − y||
.

Sparse regularization. For the case of J = J1, the proximal denoising operator (7.13) is com-
puted in closed form using a soft thresholding, as already noticed in (6.23).

The resulting proximal iterative algorithm corresponds to the iterative soft thresholding algo-
rithm, that alternates a gradient descent step

f̃ (k) = f (k) − τΦ∗(Φf (k) − y). (7.14)

and soft thresholding
f (k+1) =

∑
m

S1
λτ (〈f̃ (k), ψm〉)ψm. (7.15)

Table 17 details the implementation of this method, when the data is assumed to be sparse in the
trivial identity basis.

TV regularization. For the case of J = JTV, the proximal operator (7.13) does not have a
closed form solution. One thus has to use inner iteration of Chambolle’s scheme (6.22) to compute
the proximal map.

106 CHAPTER 7. INVERSE PROBLEMS

% gradient descent step size
tau = 1.9/norm(Phi)^2;
% iterative thresholding
fspars = y; % initialization
for i=1:niter

fspars = perform_thresholding(fspars + tau*Phi'*(y−Phi*fspars), lambda*tau, 'soft');
end

Matlab code 17: Iterative thresholding (iteration of (7.14) and (7.15)) to solve the inverse
problem regularization with `1 prior, in the case where the sparsity basis is the identity. The
input is the operator Φ given as a matrix Phi, the observation y stored in y and the regularization
parameter λ stored in lambda. The output is the solution fspars.
7.2 Example of Inverse Problems

We detail here some inverse problem in imaging that can be solved using quadratic regularization
or non-linear TV and sparse regularization.

7.2.1 Deconvolution
The blurring operator (7.1) is diagonal over Fourier, so that quadratic regularization are easily

solved using Fast Fourier Transforms when considering periodic boundary conditions.
The pseudo-inverse f? = f+ defined in (7.7) is computed as

f̂?[ω] =
{
ŷ[ω]/ĥ[ω] if ĥ[ω] 6= 0,
0 if ĥ[ω] = 0.

The quadratic regularization defined in (7.8) is computed as

f̂?[ω] =
ĥ[ω]∗

|h[ω]|2 + λ
ŷ[ω] (7.16)

and the Sobolev regularization defined in (7.9) satisfy

f̂?[ω] =
ĥ[ω]∗

|h[ω]|2 − λρ2[ω]
ŷ[ω] (7.17)

where ρ[ω]2 depends on the discretization of the Laplacian operator, and is given in (6.4) for a
finite difference implementation. Table 18 details the implementation of both regularization.

% Fourier transform of the filter
phiF = fft2(phi);
% Perform the L2 inversion.
fl2 = real(ifft2(yF .* conj(phiF) ./ (abs(phiF).^2 + epsilon)));
% Compute the Sobolev prior penalty (rescale to [0,1]).
x = [0:n/2−1, −n/2:−1];
[Y,X] = meshgrid(x,x);
\rho = (X.^2 + Y.^2)*(2/n)^2;
% Perform the sobolev inversion.
fsob = real(ifft2(fft2(y) .* conj(phiF) ./ (abs(phiF).^2 + lambda*\rho)));

Matlab code 18: `2 and Sobolev regularization. The filter φ is given in phi, the regularization
parameter λ in lambda and the obervation y in y. The output are the `2 regularization fl2 and
the Sobolev regularization fsob.

Both TV and sparse regularization cannot be solved as easily and necessitate iterative proximal
algorithm for their resolution. We now give two example of such deconvolution for a spike and
wavelet orthogonal bases.

Sparse Spikes. Sparse spikes deconvolution makes use of sparsity in the spacial domain, which
corresponds to the orthogonal basis of Diracs ψm[n] = δ[n−m]. This sparsity was first introduced
in the seismic imaging community [], where the signal f0 represent the change of density in the
underground and is assumed to be composed of a few Diracs impulse.

7.2. EXAMPLE OF INVERSE PROBLEMS 107

In a simplified linearized 1D set-up, ignoring multiple reflexions, the acquisition of underground
data f0 is modeled as a convolution y = h ? f0 + w, where h is a so-called “wavelet” signal sent
in the ground. This should not be confounded with the construction of orthogonal wavelet bases
detailed in Chapter 3, although the term “wavelet” originally comes from seismic imaging.

The wavelet filter h is typically a band pass signal that perform a tradeoff between space and
frequency concentration especially tailored for seismic exploration. Figure (7.3) shows a typical
wavelet that is a second derivative of a Gaussian, together with its Fourier transform. This shows
the large amount of information removed from f during the imaging process.

The sparse `1 regularization in the Dirac basis reads

f? = argmin
f∈RN

1
2
||f ? h− y||2 + λ

∑
m

|f [m]|.

Figure 7.3 shows the result of `1 minimization for a well chosen λ parameter, that was optimized
in an oracle manner to minimize the error ||f? − f0||.

h ĥ

f0 y = h ? f + w

f+ f?

Figure 7.3: Pseudo-inverse and `1 sparse spikes deconvolution.

The iterative soft thresholding for sparse spikes inversion iterates

f̃ (k) = f (k) − τh ? (h ? f (k) − y)

and
f (k+1)[m] = S1

λτ (f̃
(k)[m])

where the step size should obeys

τ < 2/||Φ∗Φ|| = 2/max
ω

|ĥ(ω)|2

to guarantee convergence. Figure 7.4 shows the progressive convergence of the algorithm, both in
term of energy minimization and iterates. Since the energy is not strictly convex, we note that
convergence in energy is not enough to guarantee convergence of the algorithm.

Sparse in wavelets. Signal and image acquired by camera always contain some amount of blur
because of objects being out of focus, movements in the scene during exposure, and diffraction. A
simplifying assumption assumes a spatially invariant blur, so that Φ is a convolution

y = f0 ? h+ w.

108 CHAPTER 7. INVERSE PROBLEMS

log10(E(f (k))/E(f?)− 1) log10(||f (k) − f?||/||f0||)

Figure 7.4: Decay of the energy and convergence through the iterative thresholding iterations.

In the following, we consider h to be a Gaussian filter of width µ > 0. The number of effective
measurements can thus be considered to be P ∼ 1/µ, since Φ nearly set to 0 large enough Fourier
frequencies. Table 19 details the implementation of the sparse deconvolution algorithm.

Figures 7.5 and 7.6 shows examples of signal and image acquisition with Gaussian blur.
Sobolev regularization (7.17) improves over `2 regularization (7.16) because it introduces an

uniform smoothing that reduces noise artifact. It however fail to recover sharp edge and thus does
a poor job in inverting the operator. To recover sharper transition and edges, one can use either a
TV regularization or a sparsity in an orthogonal wavelet basis.

Figure 7.5 shows the improvement obtained in 1D with wavelets with respect to Sobolev. Figure
7.6 shows that this improvement is also visible for image deblurring. To obtain a better result with
fewer artifact, one can replace the soft thresholding in orthogonal wavelets in during the iteration
(7.15) by a thresholding in a translation invariant tight frame as defined in (5.6).

Signal f0 Filter h

Observation y = h ? f0 + w `1 recovery f?

Figure 7.5: Sparse 1D deconvolution using orthogonal wavelets.

Figure 7.7 shows the decay of the SNR as a function of the regularization parameter λ. This
SNR is computed in an oracle manner since it requires the knowledge of f0. The optimal value of
λ was used in the reported experiments.

7.2.2 Noiseless Inpainting

For the inpainting problem, the operator defined in (7.4) is diagonal in space

Φ = diagm(δΩc [m]),

and is an orthogonal projector Φ∗ = Φ.
In the noiseless case, to constrain the solution to lie in the affine space

{
f ∈ RN \ y = Φf

}
, we

7.2. EXAMPLE OF INVERSE PROBLEMS 109

Image f0 Observations y = h ? f0 + w `2 regularization
SNR=?dB SNR=?dB

Sobolev regularization `1 regularization `1 invariant
SNR=?dB SNR=?dB SNR=?dB

Figure 7.6: Image deconvolution.

use the orthogonal projector

∀x, Py(f)(x) =
{
f(x) if x ∈ Ω,
y(x) if x /∈ Ω.

Sobolev and TV inpainting. In the noiseless case, the recovery (7.6) is solved using a projected
gradient descent. For the Sobolev energy, the algorithm iterates

f (k+1) = Py(f (k) + τ∆f (k)).

which converges if τ < 2/||∆|| = 1/4. Figure 7.8 shows some iteration of this algorithm, which
progressively interpolate within the missing area. Table 20 details the implementation of the
inpainting with the Sobolev prior.

Figure 7.9 shows an example of Sobolev inpainting to achieve a special effect.
For the smoothed TV prior, the gradient descent reads

f (k+1) = Py

(
f (k) + τ ÷

(
∇f (k)√

ε2 + ||∇f (k)||2

))
which converges if τ < ε/4.

Figure 7.10 compare the Sobolev inpainting and the TV inpainting for a small value of ε. The
SNR is not improved by the total variation, but the result looks visually slightly better.

Sparsity inpainting. To inpaint using a sparsity prior without noise, we use a small value for
λ. The iterative thresholding algorithm (7.15) is written as follow for τ = 1,

f (k+1) =
∑
m

S1
λ(〈Py(f (k)), ψm〉)ψm

Figure 7.11 shows the improvevement obtained by the sparse prior over the Sobolev prior if one
uses soft thresholding in a translation invariant wavelet frame.

110 CHAPTER 7. INVERSE PROBLEMS

SN
R

λλopt

SN
R

λλopt

SN
R

λλopt

`2 regularization Sobolev regularization `1 regularization

Figure 7.7: SNR as a function of λ.

% Fourier transform of the filter, assumed to be symetric
hF = fft2(h);
% Shortcut for the filtering operator
filt = @(x)real(ifft2(fft2(x).*hF));
% Iterative soft thresholding in wavelets.
fspars = y; % initialization
tau = 1.5/max(abs(hF(:)));
for i=1:niter

fspars = fspars + tau * filt(y−filt(fspars));
fW = perform_wavelet_transf(fspars, Jmin, +1,options);
fW = perform_thresholding(fW, lambda*tau, 'soft');
fspars = perform_wavelet_transf(fW, Jmin, −1,options);

end

Matlab code 19: Deconvolution with `1 regularization in a wavelet basis. The filter φ is given
in phi, the observations in y, the regularization parameter λ is lambda. The solution is given in
fspars.

% step size
tau = 1/5;
% initialization
fsob = y;
for i=1:niter

% laplacien
L = div(grad(fsob));
% gradient descent
fsob = fsob + tau * L;
% project on constraints
fsob(mask==0) = y(mask==0);

end

Matlab code 20: Inpainting with Sobolev regularization. The mask Ω is given in mask, so that
the masked indices are f(mask), the observations in y. The solution is given in fsob.
7.2.3 Tomography Inversion

In medical imaging, a scanner device compute projection of the human body along rays ∆t,θ

defined
x · τθ = x1 cos θ + x2 sin θ = t

where we restrict ourself to 2D projection to simplify the exposition.
The scanning process computes a Radon transform, which compute the integral of the function

to acquires along rays

∀ θ ∈ [0, π),∀ t ∈ R, pθ(t) =
∫

∆t,θ

f(x) ds =
∫∫

f(x) δ(x · τθ − t) dx

see Figure (7.12)
The Fourier slice theorem relates the Fourier transform of the scanned data to the 1D Fourier

transform of the data along rays

∀ θ ∈ [0, π) , ∀ ξ ∈ R p̂θ(ξ) = f̂(ξ cos θ, ξ sin θ). (7.18)

7.2. EXAMPLE OF INVERSE PROBLEMS 111

k = 1 k = 10 k = 20 k = 100

Figure 7.8: Sobolev projected gradient descent algorithm.

Image f0 Observation y = Φf0 Sobolev f?

Figure 7.9: Inpainting the parrot cage.

This shows that the pseudo inverse of the Radon transform is computed easily over the Fourier
domain using inverse 2D Fourier transform

f(x) =
1
2π

∫ π

0

pθ ? h(x · τθ) dθ

with ĥ(ξ) = |ξ|.
Imaging devices only capture a limited number of equispaced rays at orientations {θk =

π/k}06k<K . This defines a tomography operator which corresponds to a partial Radon trans-
form

Rf = (pθk
)06k<K .

Relation (7.18) shows that knowing Rf is equivalent to knowing the Fourier transform of f along
rays,

{f̂(ξ cos(θk), ξ sin(θk)) }k.

We thus simply the acquisition process over the discrete domain and model it as computing directly
samples of the Fourier transform

Φf = (f̂ [ω])ω∈Ω ∈ RP

where Ω is a discrete set of radial lines in the Fourier plane, see Figure 7.13, right.
In this discrete setting, recovering from Tomography measures y = Rf0 is equivalent in this

setup to inpaint missing Fourier frequencies, and we consider partial noisy Fourier measures

∀ω ∈ Ω, y[ω] = f̂ [ω] + w[ω]

where w[ω] is some measurement noise, assumed here to be Gaussian white noise for simplicity.
The peuso-inverse f+ = R+y defined in (7.7) of this partial Fourier measurements reads

f̂+[ω] =
{
y[ω] if ω ∈ Ω,
0 if ω /∈ Ω.

112 CHAPTER 7. INVERSE PROBLEMS

Image f0 Observation y = Φf0

Sobolev f? TV f?

SNR=?dB SNR=?dB

Figure 7.10: Inpainting with Sobolev and TV regularization.

Figure 7.14 shows examples of pseudo inverse reconstruction for increasing size of Ω. This recon-
struction exhibit serious artifact because of bad handling of Fourier frequencies (zero padding of
missing frequencies).

The total variation regularization (7.10) reads

f? ∈ argmin
f

1
2

∑
ω∈Ω

|y[ω]− f̂ [ω]|2 + λ||f ||TV.

It is especially suitable for medical imaging where organ of the body are of relatively constant
gray value, thus resembling to the cartoon image model introduced in Section 4.2.4. Figure 7.15
compares this total variation recovery to the pseudo-inverse for a synthetic cartoon image. This
shows the hability of the total variation to recover sharp features when inpainting Fourier measures.
This should be contrasted with the difficulties that faces TV regularization to inpaint over the
spacial domain, as shown in Figure 7.11.

7.2. EXAMPLE OF INVERSE PROBLEMS 113

Image f0 Observation y = Φf0

Sobolev f? Ortho. wav f? TI. wav f?
SNR=?dB SNR=?dB SNR=?dB

Figure 7.11: Inpainting with Sobolev and sparsity.

Figure 7.12: Principle of tomography acquisition.

114 CHAPTER 7. INVERSE PROBLEMS

Image f Radon sub-sampling Fourier domain

Figure 7.13: Partial Fourier measures.

Image f0 13 projections 32 projections.

Figure 7.14: Pseudo inverse reconstruction from partial Radon projections.

Image f0 Pseudo-inverse TV

Figure 7.15: Total variation tomography inversion.

Chapter 8

Linear Mesh Processing

This chapter exposes the basics of surface approximation with 3D meshes and the way to process
such meshes with linear operators. In particular, it studies filtering on 3D meshes and explains
how a Fourier theory can be built to analyze these filters.

8.1 Surface Discretization with Triangulated Mesh

8.1.1 Continuous Geometry of Surfaces

In this course, in order to simplify the mathematical description of surfaces, we consider only
globally parameterized surfaces. We begin by considering surfaces embedded in euclidean space
M⊂ Rk.

Definition 1 (Parameterized surface). A parameterized surface is a mapping

u ∈ D ⊂ R2 7→ φ(u) ∈M.

Of course, most surfaces do not benefit from such a simple parameterization. For instance, a
sphere should be split into two parts in order to be mapped on two disks D1,D2. These topological
difficulties require the machinery of manifolds in order to incorporate a set of charts D = {Di}i
that overlap in a smooth manner. All the explanations of this course extend seamlessly to this
multi-charts setting.

A curve is defined in parameter domain as a 1D mapping t ∈ [0, 1] 7→ γ(t) ∈ D. This curve can
be traced over the surface and its geometric realization is γ̄(t) def.= φ(γ(t)) ∈ M. The computation
of the length of γ in ambient k-dimensional space Rk follows the usual definition, but to do the
computation over the parametric domain, one needs to use a local metric defined as follow.

Definition 2 (First fundamental form). For an embedded manifold M⊂ Rk, the first fundamental
form is

Iφ =
(
〈 ∂φ
∂ui

,
∂φ

∂uj
〉
)
i,j=1,2

.

This local metric Iφ defines at each point the infinitesimal length of a curve as

L(γ) def.=
∫ 1

0

||γ̄′(t)||dt =
∫ 1

0

√
γ′(t)TIφ(γ(t))γ′(t)dt.

This fundamental form is an intrinsic invariant that does not depends on how the surfaces is iso-
metrically embedded in space (since the length depends only on this tensor field Iφ). In contrast,
higher order differential quantities such as curvature might depend on the bending of the surface
and are thus usually not intrinsic (with the notable exception of invariants such as the gaussian cur-
vature). In this course, we restrict ourselves to first order quantities since we are mostly interested
in lengths and the intrinsic study of surfaces.

115

116 CHAPTER 8. LINEAR MESH PROCESSING

Example 1 (Isometry and conformality). A surface M is locally isometric to the plane if Iφ = Id2.
This is for instance the case for a cylinder. The mapping φ is said to be conformal if Iφ(u) =
λ(u)Id2. It means that the length of a curve over the plane is only locally scaled when mapped to
the surface. In particular, the angle of two interescting curves is the same over the parametric
domain and over the surface. This is for instance the case for the stereographic mapping between
the plane and a sphere.

8.1.2 Discretization of Surfaces with Triangulations
Mesh Data Structure A triangulated mesh is a discrete structure that can be used to approxi-
mate a surface embedded in Euclidean space Rk. It is composed of a topological part M = (V,E, F)
and a geometrical realization M = (V, E ,F). It is important to make the distinction between these
two parts since many algorithms rely only on geometry (point clouds processings such as dimension
reduction) or on topology (such as compression).

The topology M of the mesh is composed of
Vertices (0D): this is an abstract set of indices V ' {1, . . . , n}.
Edges (1D): this is a set of pair of vertices E ⊂ V × V . This set is assumed to be symmetric

(i, j) ∈ E ⇐⇒ i ∼ j ⇔ (j, i) ∈ E.

Faces (2D): this is a collection of 3-tuples of vertices F ⊂ V × V × V , with the additional
compatibility condition

(i, j, k) ∈ F =⇒ (i, j), (j, k), (k, i) ∈ E.

We further assumer that there is no isolated edges

∀ (i, j) ∈ E, ∃ k, (i, j, k) ∈ F.

The set of edges can be stored in a symmetric matrix A ∈ Rn×n such that Aij = 1 if (i, j) ∈ E
and Aij = 0 otherwise. This matrix is often stored as a sparse matrix since the number of edges is
usually much smaller than n2. The set of vertices and edges form a non-oriented graph G = (V,E).
Faces are often stored as a matrix AF ∈ {1, . . . , n}3×m where m is the number of faces and a
column ((AF)i,1, (AF)i,2, (AF)i,3) stores the indices of a face. In a triangulation, the face matrix
AF allows to recover the edge incidence matrix A. The face data structure allows to really capture
the 2D geometry of surfaces, which is not possible with graphs alone.

The geometric realizationM is defined through a spacial localization of the vertices (for instance
in 3D space)

V def.= {xi \ i ∈ V } ⊂ R3.

This allows to define a piecewise linear mesh

F def.=
⋃

(i,j,k)∈F

Conv(xi, xj , xk) ⊂ R3,

where the convex envelop Conv(x, y, z) of three points is the Euclidean triangle generated by
(x, y, z).

This piecewise linear realization M can be displayed as a 3D surface on a computer screen.
This is performed through a perspective projection of the points and a linear interpolation of color
and light inside the triangle. Figure 8.1 shows an example of 3D display, with a zoom on the faces
of the mesh.

Adjacency Relationships From the basis topological information given by M = (V,E, F), one
can deduce several adjacency data-structures that are important to navigate over the triangulation.

Definition 3 (Vertex 1-ring). The vertex 1-ring of a vertex i ∈ V is

Vi
def.= {j ∈ V \ (i, j) ∈ E} ⊂ V.‘ (8.1)

8.2. LINEAR MESH PROCESSING 117

Figure 8.1: Example of display of a 3D mesh.

The s-ring is defined by induction as

∀ s > 1, V
(s)
i =

{
j ∈ V \ (k, j) ∈ E and k ∈ V (s−1)

i

}
. (8.2)

Definition 4 (Face 1-ring). The face 1-ring of a vertex i ∈ V is

Fi
def.= {(i, j, k) ∈ F \ i, j ∈ V } ⊂ F.

The geometrical realization of a vertex 1-ring is

Vi =
⋃

(i,j,k)∈Vi

Conv(xi, xj , xk).

A triangulated mesh is a manifold mesh if all the rings Vi for i ∈ V are homeomorphic to either a
disk (for interior vertices) or to a half disk (for boundary vertices). This ensures that the geometrical
mesh really has the topology of a 2D surface embedded in R3 (possibly with boundaries). In
particular, it implies that there is at most two faces connected to each edge

∀ (i, j) ∈ E, # {k \ (i, j, k) ∈ F} 6 2.

As an application of these local rings, one can compute a normal at each point using a simple
rule

∀ f = (i, j, k) ∈ F, −→nf
def.=

(xj − xi) ∧ (xk − xi)
||(xj − xi) ∧ (xk − xi)||

.

and where

∀ i ∈ V, −→ni
def.=

∑
f∈Fi

−→nf
||
∑
f∈Fi

−→nf ||
.

These normals are used to define for instance a light intensity I(i) = max(〈ni, `(i), , 〉0), where `(i)
is the incident light. In practice one uses a infinite light source `(i) = ` =constant or a local spot
located at position s ∈ R3 through `(i) = (vi − s)/||vi − s||. This light intensity is interpolated on
the whole mesh during display.

8.2 Linear Mesh Processing
The light intensity I is a particular example of a function defined at each vertex of the mesh.

Mesh processing is intended to process such functions and we thus define carefully vector spaces
and operators on meshes.

8.2.1 Functions on a Mesh

In this course, a function is a discrete set of values defined at each vertex location.

118 CHAPTER 8. LINEAR MESH PROCESSING

Definition 5 (Linear space on a mesh). A function on a mesh is a mapping f ∈ `2(V) ' `2(V) '
Rn and can be viewed equivalently as

f :
{
V −→ R
xi 7−→ f(xi)

⇐⇒ f :
{
V −→ R
i 7−→ fi

⇐⇒ f = (fi)i∈V ∈ Rn.

The linear space of the functions on a mesh is equipped with an Hilbert space structure that
allows to quantify approximation error and compute projections of functions.

Definition 6 (Inner product and norm). One defines the following inner product and norm for
vector f, g ∈ Rn

〈f, g〉 def.=
∑
i∈V

figi and ||f ||2 = 〈f, f〉.

In order to modify (process) functions on a mesh (such as a light intensity I), this course
considers only linear operations that are defined through a large matrix.

Definition 7 (Linear operator A). A linear operator A is defined as

A : `2(V) → `2(V) ⇐⇒ A = (aij)i,j∈V ∈ Rn×n (matrix).

and operate on a function f as follow

(Af)(xi) =
∑
j∈V

aijf(xj) ⇐⇒ (Af)i =
∑
j∈V

aijfj .

Example 2. If the coordinates of the point of a mesh are written xi = (x1
i , x

2
i , x

3
i) ∈ R3, then the

X-coordinate defines a function f : i ∈ V 7→ x1
i ∈ R. A geometric mesh M is thus 3 functions

defined on M .

Mesh processing is the task of modifying functions f ∈ `2(V). For instance, one can denoise a
mesh M as 3 functions on M . The usual strategy applies a linear operator f 7→ Af . Sometimes,
A can computed from M only (for instance for compression) but most of the times it requires both
M and M.

8.2.2 Local Operators
In most applications, one can not store and manipulate a full matrix A ∈ Rn×n. Furthermore,

one is usually interested in exploiting the local redundancies that exist in most usual functions
f ∈ Rn defined on a mesh. This is why we restrict our attention to local operators that can be
conveniently stored as sparse matrices (the zeros are not kept in memory).

Definition 8 (Local operator). A local operator W ∈ Rn×n satisfies wij = 0 if (i, j) /∈ E.

(Wf)i =
∑

(i,j)∈E

wijfj .

A particularly important class of local operators are local smoothings (also called filterings) that
perform a local weighted sum around each vertex of the mesh. For this averaging to be consistent,
we define a normalized operator W̃ whose set of weights sum to one.

Definition 9 (Local averaging operator). A local normalized averaging is W̃ = (w̃ij)i,j∈V > 0
where

∀ (i, j) ∈ E, w̃ij =
wij∑

(i,j)∈E wij
.

It can be equivalently expressed in matrix form as

W̃ = D−1W with D = diagi(di) where di =
∑

(i,j)∈E

wij .

8.2. LINEAR MESH PROCESSING 119

The smoothing property corresponds to W̃1 = 1 which means that the unit vector is an eigen-
vector of W with eigenvalue 1.

Example 3. In practice, we use three popular kinds of averaging operators.
Combinatorial weights: they depends only on the topology (V,E) of the vertex graph

∀ (i, j) ∈ E, wij = 1.

Distance weights: they depends both on the geometry and the topology of the mesh, but do not
require faces information,

∀ (i, j) ∈ E, wij =
1

||xj − xi||2
.

Conformal weights: they depends on the full geometrical realization of the 3D mesh since they
require the face information

∀ (i, j) ∈ E, wij = cot(αij) + cot(βij). (8.3)

Figure 8.2 shows the geometrical meaning of the angles αij and βij

αij = ∠(xi, xj , xk1) and βij = ∠(xi, xj , xk2),

where (i, j, k1) ∈ F and (i, j, k2) ∈ F are the two faces adjacent to edge (i, j) ∈ E. We will see
in the next section the explanation of these celebrated cotangent weights.

xi

xj

xk1

xk2

αij

βij

Figure 8.2: One ring around a vertex i, together with the geometrical angles αij and βij used to
compute the conformal weights.

One can use iteratively a smoothing in order to further filter a function on a mesh. The resulting
vectors W̃f, W̃ 2, . . . , W̃ kf are increasingly smoothed version of f . Figure 8.3 shows an example of
such iterations applied to the three coordinates of mesh. The sharp features of the mesh tend to
disappear during iterations. We will make this statement more precise in the following, by studying
the convergence of these iterations.

8.2.3 Approximating Integrals on a Mesh
Before investigating algebraically the properties of smoothing operators, one should be careful

about what are these discrete operators really approximating. In order for the derivation to be
simple, we make computation for a planar triangulation M of a mesh M⊂ R2.

In the continuous domain, filtering is defined through integration of functions over the mesh.
In order to descretize integrals, one needs to define a partition of the plane into small cells centered
around a vertex or an edge.

Definition 10 (Vertices Voronoi). The Voronoi diagram associated to the vertices is

∀ i ∈ V, Ei = {x ∈M \ ∀ j 6= i, ||x− xi|| 6 ||x− xj ||}

120 CHAPTER 8. LINEAR MESH PROCESSING

Figure 8.3: Examples of iterative smoothing of a 3D mesh.

Voronoi and Dual Mesh

20

Definition for a planar triangulation M of a meshM⊂ R2.

Voronoi for vertices: ∀ i ∈ V, Ei = {x ∈M \ ∀ j #= i, ||x− xi|| ≤ ||x− xj ||}

Voronoi for edges: ∀ e = (i, j) ∈ E, Ee = {x ∈M \ ∀ e′ #= e, d(x, e) ≤ d(x, e′)}

Partition of the mesh: M =
⋃

i∈V

Ei =
⋃

e∈E

Ee.

i

j

Ai

cf

i

j

A(ij)cf

Dual mesh 1:3 subdivided mesh

Voronoi and Dual Mesh

20

Definition for a planar triangulation M of a meshM⊂ R2.

Voronoi for vertices: ∀ i ∈ V, Ei = {x ∈M \ ∀ j #= i, ||x− xi|| ≤ ||x− xj ||}

Voronoi for edges: ∀ e = (i, j) ∈ E, Ee = {x ∈M \ ∀ e′ #= e, d(x, e) ≤ d(x, e′)}

Partition of the mesh: M =
⋃

i∈V

Ei =
⋃

e∈E

Ee.

i

j

Ai

cf

i

j

A(ij)cf

Dual mesh 1:3 subdivided mesh
Figure 8.4: Left: vertex Voronoi cell, right: delaunay Voronoi cell. The point cf is the orthocenter
of a face f = (i, j, k).

Definition 11 (Edges Voronoi). The Voronoi diagram associated to the edges is

∀ e = (i, j) ∈ E, Ee = {x ∈M \ ∀ e′ 6= e, d(x, e) 6 d(x, e′)}

These Voronoi cells indeed form a partition of the mesh

M =
⋃
i∈V

Ei =
⋃
e∈E

Ee.

The following theorem gives the formula for the area of these cells.

Theorem 1 (Voronoi area formulas). For all e = (i, j) ∈ E, ∀ i ∈ V , one has

Ae = Area(Ee) =
1
2
||xi − xj ||2 (cot(αij) + cot(βij))

Ai = Area(Ei) =
1
2

∑
j∈Ni

A(ij).

With these areas, one can approximate integrals on vertices and edges using∫
M
f(x)dx ≈

∑
i∈V

Ai f(xi) ≈
∑

e=(i,j)∈E

Ae f([xi, xj]).

8.2. LINEAR MESH PROCESSING 121

Of particular interest is the approximation of the so-called Dirichelet energy
∫
M ||∇xf ||2dx. In

order to compute it on a triangular mesh, one can use a finite difference approximation of the
gradient of a function at the point xij = (xi + xj)/2 along an edge (i, j)

〈∇xijf,
xi − xj
||xi − xj ||

〉 ≈ f(xi)− f(xj)
||xi − xj ||

.

This leads to the following approximation of the Dirichlet energy∫
M
||∇xf ||2dx ≈

∑
(i,j)∈E

A(i,j)〈∇xijf,
xi − xj
||xi − xj ||

〉2 ≈
∑

(i,j)∈E

A(i,j)
|f(xj)− f(xi)|2

||xj − xi||2
(8.4)

=
∑

(i,j)∈E

wij |f(xj)− f(xi)|2 where wij = cot(αij) + cot(βij). (8.5)

This discrete formulation shows that the correct weights to approximate the Dirichlet energy are
the cotangent one, already introduced in equation (8.3).

8.2.4 Example on a Regular Grid
A regular grid is an uniform discretization with n points of [0, 1) (in 1D) or [0, 1)2 (in 2D).

One usually assumes periodic boundary conditions, which means that each side of the square is
associated with its opposite.

Since the geometry of a regular grid is invariant under translation, local averaging operators
can be computed as convolution on D = (Z/pZ)d where n = pd for d the dimension of the domain
(d = 1 or d = 2)

∀ i ∈ D, W̃f(i) =
∑
k∈D

f(k)w̃(i− k),

where the operation + and − should be computed modulo p and w̃(k) = W̃ (0, k) is the convolution
kernel.

Example 4 (Averaging). The uniform averaging filter is defined as

W̃f(i) =
1
|N |

∑
k∈N

f(i+ k),

where N is the set of neighbors of the point 0 and |N | = 2d. In this case, in dimension 1,
w̃ = (1, 0, 1)/2, where this notation assumes that w̃ is centered at the point 0.

In order to study translation invariant operators like local filtering, one needs to use the discrete
Fourier transform that diagonalizes these operators.

Definition 12 (Discrete Fourier transform). The 1D discrete Fourier transform Φ(f) ∈ Cn of the
vector f ∈ Cn

Φ(f)(ω) = f̂(ω) def.=
1
n

∑
k

fke
2ıπ
n kω.

A similar definition can be given for the 2D discrete Fourier transform. The main property of
the Fourier transform is the following diagonalization result.

Theorem 2 (Convolution and Fourier). For any vector f , one has

Φ(W̃ kf) = Φ(w̃ ∗ . . . ∗ w̃ ∗ f) =⇒ Φ(W̃ kf)(ω) = ̂̃w(ω)k f̂(ω).

The main interest of this tools is that Φ(f) can be computed in O(n log(n)) operations with the
FFT algorithm. Using the following theorem, it gives an alternative expression of a local filtering.
This expression in the Fourier domain can be used to speed up the computation of w̃ ∗ f if w̃ has
a lot of non zero entries (which is not the case in our setting of local operators). It is also useful
to analyze theoretically the behavior of iterated filterings.

122 CHAPTER 8. LINEAR MESH PROCESSING

Theorem 3 (Convergence). For any function f defined on a regular grid in 1D or 2D, one has

W̃ kf
k→+∞−→ 1

|V |
∑
i∈V

fi

This Fourier theory can only be developed for domains that have a group structure that enables
translation invariant filtering. In particular, it does not carry over easily to an arbitrary surface.
In the remaining, we define a corresponding theory for graphs and triangulated surfaces using the
eigenvector of Laplacian operators. This Fourier transform on meshes enables the analysis of the
convergence of many filtering schemes.

8.2.5 Gradients and Laplacians on Meshes
Gradient operator A gradient operator defines directional derivatives on a triangulation. It
maps functions defined on vertices to functions defined on the set of oriented edges

Ē
def.= {(i, j) ∈ E \ i > j} .

Definition 13 (Gradient). Given a local averaging W , the gradient operator G is defined as

∀ (i, j) ∈ E, i < j, (Gf)(i,j)
def.=

√
wij(fj − fi) ∈ R.

This mapping can be viewed equivalently as

G : `2(V) −→ `2(E), or G : Rn −→ Rp where p = |E|,
or G ∈ Rn×p (a matrix).

The value of (Gf)e for an edge e = (i, j) can be thought as a derivative along direction −−→xixj .

Example 5. For the local averaging based on square distances, one has

wij = ||xi − xj ||−2, (Gf)(i,j) =
f(xj)− f(xi)
||xi − xj ||

.

which is exactly the finite difference discretization of a directional derivative.

One a regular grid, one can note that

Gf discretizes ∇f =
(
∂f
∂x ,

∂f
∂y

)T

.

GTv discretizes ÷(v) = ∂v1
∂x + ∂v2

∂y .

Laplacian Operator A Laplacian operator is a discrete version of a second order derivative
operator.

Definition 14 (Laplacian). Given a local averaging W , the Laplacian operator D is defined as

L
def.= D −W, where D = diagi(di), with di =

∑
j

wij .

In the remaining, we also make use of normalized operators, which have an unit diagonal.

Definition 15 (Normalized Laplacian). The normalized Laplacian is defined as

L̃
def.= D−1/2LD−1/2 = Idn −D−1/2WD1/2 = Idn −D1/2W̃D−1/2.

This normalized Laplacian correspond to the weighted graph Laplacian used in graph theory,
see for instance [7].

Remark 1. One can note that
Laplacians are symmetric operators L, L̃ ∈ Rn×n.

8.2. LINEAR MESH PROCESSING 123

L acts like a (second order) derivative since L1 = 0.
in contrast, the normalized Laplacian is not a real derivative since L̃1 6= 0 in general.

The main interest of the gradient operator is that it factorizes the Laplacian as follow.

Theorem 4 (Laplacian factorization). One has

L = GTG and L̃ = (GD−1/2)
T
(GD−1/2).

This theorem proves in particular that L and L̃ are symmetric positive definite operators. The
inner product defined by the Laplacian can be expressed as an energy summed over all the edges
of the mesh

〈Lf, f〉 = ||Gf ||2 =
∑

(i,j)∈E

wij ||fi − fj ||2.

In the particular case of the cotangent weights introduced in equation (8.3), one can see that the
Laplacian norm 〈Lf, f〉 is exactly the finite differences approximation of the continuous Dirichlet
energy

∫
M |∇xf |dx derived in equation (8.5). This is why these cotangent weights are the best

choice to compute a Laplacian that truly approximates the continuous Laplace Beltrami operator
(see definition 16).

A similar expression is derived for the normalized laplacian

〈L̃f, f〉 = ||GD−1/2f ||2 =
∑

(i,j)∈E

wij

∣∣∣∣∣∣ fi√
di
− fj√

dj

∣∣∣∣∣∣2.
Of particular interest for the study of filtering on meshes is the behavior of the spectrum of the
Laplacian. We can first study its kernel.

Theorem 5 (Kernel of the Laplacian). If M is connected, then

ker(L) = span(1) and ker(L) = span(D1/2).

8.2.6 Examples in 1D and 2D
In 1D, all local weights are equivalent since the points are equi-spaced. The corresponding

Laplacian is a convolution that can be written as

(Lf)i =
1
h2

(2fi − fi+1 − fi−1) =
1
h2
f ∗ (−1, 2, 1) ,

where it is important to remember that the notation (−1, 2, 1) means that the vector is centered
around 0.

This discrete 1D Laplacian is the finite difference approximation of the continuous Laplacian
on the torus T of the segment [0, 1) modulo 1. Up to a minus sign, this Laplacian is just the second
order derivative

L
h→0−→ −d2f

dx2
(xi)

One should be careful with our notation that consider positive semi-definite Laplacian, that have
the opposite sign with respect to second order derivative operators (which are definite negative).

The gradient operator corresponds to a discretization of the first order derivative f 7→ f ′ (which
is anti symmetric). The continuous counterpart of the factorization L = GTG is the integration
by part formula on the torus∫

T
f ′′(x)g(x)dx = −

∫
T
−f(x)g′(x)dx =⇒

∫
T
f ′′(x)f(x)dx = −

∫
T
|f ′(x)|2 6 0.

The discrete Laplacian on a 2D grid can also be written as a 2D convolution

(Lf)i =
1
h2

(4fi − fj1 − fj2 − fj3 − fj4) =
1
h2
f ∗

 0 -1 0
-1 4 -1
0 -1 0



124 CHAPTER 8. LINEAR MESH PROCESSING

where {jk}k are the four neighbors of the point i. This operator is the finite difference approxima-
tion to the continuous 2D Laplacian

L
h→0−→ −∂

2f

∂x2
(xi)−

∂2f

∂y2
(xi) = −∆f(xi).

The factorization Lf = GTGf corresponds to the decomposition ∆f = ÷(∇f).

8.2.7 Example of a Parametric Surface

We recall that a parameterized surface is a mapping u ∈ D ⊂ R2 7→ φ(u) ∈ M. Whereas the
continuous Laplacian is simple to define on the plane using partial derivatives, its definition on
a surface requires the intervention of an arbitrary parameterization φ which makes its expression
cumbersome.

Definition 16 (Laplace-Beltrami). The Laplace-Beltrami operator on a parametric surface M is
defined as

√
g∆M

def.=
∂

∂u1

(
g22√
g

∂

∂u1
− g12√

g

∂

∂u2

)
+

∂

∂u2

(
g11√
g

∂

∂u2
− g12√

g

∂

∂u1

)
where g = det(Iφ) and Iφ = (gij)i,j=1,2.

The Laplacian is however an intrinsic operator that does not depends on the chosen parame-
terization, as shown by the following approximation theorem.

Remark 2 (Laplacian using averaging).

∆Mf(x) = lim
h→0

1
|Bh(x)|

∫
y∈M

f(y)dy where Bh(x) = {y \ dM(x, y) 6 h}

where dM is the geodesic distance on M and h = max(i,j)∈E ||xi−xj || is the discretization precision.

8.3 Diffusion and Regularization on Surfaces

8.3.1 Heat Diffusion

The main linear PDE for regularization of functions is the heat equation that governs the
isotropic diffusion of the values of a function in time.

Definition 17 (Heat diffusion). ∀ t > 0, one defines Ft : M → R solving

∂Ft
∂t

= −D−1LFt = −(Idn − W̃)Ft and ∀ i ∈ V, F0(i) = f(i)

In order to compute numerically the solution of this PDE, one can fix a time step δ > 0 and
use an explicit discretization in time F̄k as F0 = f and

1
δ

(
F̄k+1 − F̄k

)
= −D−1LF̄k =⇒ F̄k+1 = F̄k − δD−1LF̄k = (Id− δ)F̄k + δW̃ F̄k. (8.6)

If δ is small enough, one hopes that the discrete solution F̄k is close to the continuous time solution
Ft for t = δk. This is indeed the case as proven later in these notes.

Remark 3. In order for this scheme to be stable, one needs δ < 1. This is be proven later using
the extension of Fourier theory to meshes.

Remark 4. If δ = 1, then the discretization of the Heat equation corresponds to iterative smoothing
since F̄k = W̃ kf . In this case stability is not guaranteed but only pathological meshes give unstable
filtering (see theorem 13).

8.3. DIFFUSION AND REGULARIZATION ON SURFACES 125

Instead of using the explicit discretization in time (8.6), one can use an implicit scheme which
compute an approximate solution F̃k at step k by solving

1
δ

(
F̃k+1 − F̃k

)
= −D−1LF̃k+1 =⇒ ((δ + 1)Idn − δW̃)F̃k+1 = F̃k. (8.7)

Computing F̃k requires the solution of a sparse linear system at each step k. The implicit scheme
(8.7) is thus computationally more involved than the explicit scheme (8.6). We will however see
later that the implicit scheme is always stable for any value of δ 6 1.

Example 6 (Mesh smoothing). In order to smooth a mesh whose points are xi = (x1
i , x

2
i , x

3
i),

one can perform a heat diffusion for each component fi = (xki), k = 1, 2, 3. Figure 8.5 shows an
example of such a smoothing.

In practice, mesh smoothing is used to denoise a function f = f0 + σg where g ∈ Rn is a
realization of a gaussian white noise (each entry g(i) are independent and follow a gaussian law with
unit variance). The difficult task it to find an optimal stopping time t to minimize ||Ft−f0||, which
is not available since one does not know f0. For uniformly smooth surfaces, the theory predicts that
a linear filtering such as the heat equation requires a stopping time proportional to the noise level
σ. This is however false for more complex surfaces such as the one used in computer graphics. In
these case, alternate non linear diffusions such as non-linear PDE or wavelet thresholding usually
perform better, see [20] for an overview of these methods in image processing.

Original Iter #1 Iter #2 Iter #3 Iter #4 Iter #5

Original Iter #1 Iter #2 Iter #3 Iter #4

Figure 8.5: Examples of mesh denoising with the heat equation.

Other differential equations. One can solve other partial differential equations involving the
Laplacian over a 3D mesh M = (V,E, F). For instance, one can consider the wave equation, which
defines, for all t > 0, a vector Ft ∈ `2(V) as the solution of

∂2Ft
∂t2

= −D−1LFt and
{
F0 = f ∈ Rn,
d
dtF0 = g ∈ Rn, (8.8)

126 CHAPTER 8. LINEAR MESH PROCESSING

In order to compute numerically the solution of this PDE, one can fix a time step δ > 0 and use
an explicit discretization in time F̄k as F0 = f , F1 = F0 + δg and for k > 1

1
δ2
(
F̄k+1 + F̄k−1 − 2F̄k

)
= −D−1LF̄k =⇒ F̄k+1 = 2F̄k − F̄k−1 − δ2D−1LF̄k.

Figure 8.6 shows examples of the resolution of the wave equation on 3D meshes.

Figure 8.6: Example of evolution of the wave equation on 3D mesh. The initial condition f is a
superposition of small positive and negative gaussians.

8.3.2 Spectral Decomposition

In order to better understand the behavior of linear smoothing on meshes, one needs to study
the spectral content of Laplacian operators. This leads to the definition of a Fourier theory for
meshes. The decomposition L̃ = (GD−1/2)

T
(GD−1/2) of the Laplacian implies that it is a positive

semi-definite operator. One can thus introduce the following orthogonal factorization.

Theorem 6 (Eigen-decomposition of the Laplacian). It exists a matrix U, UTU = Idn such that

L̃ = UΛUT where Λ = diagω(λω), λ1 6 . . . 6 λn.

The eigenvalues λω correspond to a frequency index that ranks the eigenvectors uω of U =
(uω)ω. One can first state some bounds on these eigenvalues.

Theorem 7 (Spectral bounds). ∀ i, λi ∈ [0, 2] and
If M is connected then 0 = λ1 < λ2.
λn = 2 if and only if M is 2-colorable.

We recall the definition of a colorable graph next.

Definition 18 (Colorable graph). A graph (V,E) is k-colorable if it exist a mapping f : V →
{1, . . . , k} such that

∀ (i, j) ∈ E, f(i) 6= f(j).

A 2-colorable graph is also called bi-partite. A 2-colorable mesh is pathological for filtering
since one can split the set of vertices into two parts without inner connexions. The filtering process
can oscillate by exchanging values between these sets, thus never converging.

8.3. DIFFUSION AND REGULARIZATION ON SURFACES 127

The orthogonal eigen-basis U = (uω)ω is an orthogonal basis of the space Rn ' `2(V), which
can be written as

uω :
{
V −→ R
i 7−→ uω(xi)

The orthogonality means that 〈uω, uω′〉 = δω
′

ω . This basis allows to compute an orthogonal de-
composition of any functions f

∀ f ∈ `2(V), f =
∑
ω

〈f, uω〉uω.

Having such a tool allows to split a function f in elementary contributions 〈f, uω〉 with a control
in the energy because of orthogonality

||f ||2 =
∑
ω

|〈f, uω〉|2.

ω = 2 ω = 4 ω = 8 ω = 12 ω = 16

Figure 8.7: Examples of eigenvectors uω of the Laplacian L̃. The blue colors indicated negative
values, red colors positive ones. The black curve is the 0 level set of the eigenvector.

Figure 8.7 shows some examples of eigenfunctions depicted using color ranging from blue (neg-
ative values of the eigenfunction) to red (positive values). One can see that these functions are
oscillating, in a way similar to the traditional Fourier basis. In some sense (made more precise
latter), this basis is the extension of the Fourier basis to meshes. A function uω corresponding to
a large spectral value λω is highly oscillating and corresponds thus intuitively to a high frequency
atom.

Extracting numerically eigenvectors from a large matrix is a difficult problem. If the matrix is
sparse, a method of choice consists in using iterative powers of a shifted version of the laplacian.
One starts from a random initial vector v0 and iterates

vk+1 =
wk+1

||wk+1||
where wk+1 = (L̃− λIdn)−1vk. (8.9)

These iterates converges to the eigenvectors corresponding to the eigenvalue the closest to λ, as
staten in the following theorem.

Theorem 8 (Inverse iterations). For a given shift λ, lets denote

ω? = argmin
ω

|λ− λω| and ω+ = argmin
ω 6=ω?

|λ− λω|

128 CHAPTER 8. LINEAR MESH PROCESSING

If |λ− λω? | < |λ− λω+ |, then

vk
k→+∞−→ uω? and 〈Lvk, vk〉

k→+∞−→ λω? .

The speed of convergence of these inverse iterations is governed by the conditioning of (L̃ −
λIdn)−1 since

||vk − uω? || 6 Cρ(λ)k where ρ(λ) def.=
|λ− λω? |
|λ− λω+ |

< 1.

The smallest ρ(λ) is, the faster the method converges.
In order to compute an iteration (8.9) of the method, one needs to solve a sparse linear system

Awk+1 = vk whith A = L̃ − λIdn. In order to do so, one can use a direct method such as LU
factorization. The advantage of such an approach is that the factorization is computed once for
all and can be re-used to solve very quickly at each step k. These factorization are however quite
slow to compute especially for large matrices. For large problems, one can solve this linear system
using an iterative algorithm such as conjugate gradient. These iterative method are attractive for
sparse matrices, but a fast convergence requires 1/ρ(λ), the conditioning of L̃ − λIdn to be not
large, with is contradictory with the constraint for iterations 8.9 to converge fast.

8.3.3 Spectral Theory on a Regular Grid
In the particular case of a 1D or 2D lattice, the eigenfunctions defined earlier correspond exactly

to the Fourier basis used in the discrete Fourier transform.

Theorem 9 (Spectrum in 1D). For a 1D regular lattice,

uω(k) =
1√
n

exp
(

2ıπ
n
kω

)
and λω = 4 sin2

(
2π
n
ω

)
.

Theorem 10 (Spectrum in 2D). For a 2D regular lattice, n = n1n2, ω = (ω1, ω2)

uω(k) =
1√
n

exp
(

2ıπ
n
〈k, ω〉

)
and λω = 4

(
sin2

(
2π
n1
ω1

)
+ sin2

(
2π
n2
ω2

))
.

As already mentioned, on a mesh, the eigenvectors of L̃ correspond to a extension of the Fourier
basis to meshes. The definition of the Fourier transform on meshes requires a little care since a
diagonal normalization by D is used as defined next.

Definition 19 (Manifold-Fourier transform). For f ∈ `2(V),

Φ(f)(ω) = f̂(ω) def.= 〈D1/2f, uω〉 ⇐⇒ Φ(f) = f̂ = UTD1/2.

where (uω)ω are the eigenvectors of L̃.

One can note that there is still a degree of freedom in designing this Fourier transform since
one can use any local weighting (for instance combinatorial, distance or conformal). Depending
on the application, one might need to use weights depending only on the topology of the mesh
(combinatorial for mesh compression).

A major theoretical interest of this Fourier transform is that it diagonalizes local averaging
operators.

Theorem 11 (Spectral smoothing). One has ΦW̃Φ−1 = Idn − Λ and thus for any function f

̂̃Wf(ω) = (1− λω)f̂(ω)

This diagonalization allows to prove the convergence of iterative smoothing.

Theorem 12 (Convergence of iterated smoothing). If λn < 2 (i.e. M is not 2-colorable), then for
any function f

W̃ kf
k→+∞−→ 1

n

∑
i∈V

fi.

8.3. DIFFUSION AND REGULARIZATION ON SURFACES 129

8.3.4 Spectral Resolution of the Heat Diffusion
Recall that the heat diffusion is defined as

∀ t > 0,
∂Ft
∂t

= −D−1LFt = −(Idn − W̃)Ft

Using the manifold Fourier expansion F̂t
def.= UTD1/2Ft, this differential equation can be re-written

as
∂F̂t(ω)
∂t

= −λωF̂t(ω) =⇒ F̂t(ω) = exp(−λωt)f̂(ω). (8.10)

This allows to study the convergence of the continuous heat equation.

Theorem 13 (Convergence of heat equation). If M is connected,

Ft
t→+∞−→ 1

n

∑
i∈V

fi.

Recall that the heat equation is discretized using the following explicit and implicit schemes,
equations (8.6) and (8.7) {

F̄k = (1− δ)F̄k + δW̃ F̄k,

((1 + δ)Idn − δW̃)F̃k+1 = F̃k.

These filtering iterations can be re-written over the Fourier domain as ̂̄Fk+1(ω) = (1− δλω)̂̄Fk(ω),
̂̃Fk+1(ω) = 1

(1+δλω)
̂̄Fk(ω).

This allows to state the stability and convergence of the finite difference discretization.

Theorem 14 (Convergence of discretization). The explicit scheme is stable if δ < 1. The implicit
scheme is always stable. One has {

F̄t/δ
δ→0−→ Ft,

F̃t/δ
δ→0−→ Ft.

with the restriction that for the explicit scheme, the mesh must not be 2-colorable.

Other Differential Equations. The manifold Fourier transform can also be used to solve the
wave equation (8.8) since

∂2F̂t(ω)
∂t2

= −λωF̂t(ω) =⇒ F̂t(ω) = cos(
√
λωt)f̂(ω) +

1√
λω

sin(
√
λωt)ĝ(ω).

8.3.5 Quadratic Regularization
Instead of using a PDE for regularization, one can try to find a new function that is both close

to the original one f and that is smooth in a certain sense. This leads to the notion of quadratic
regularization, where one uses a Laplacian as a smoothness prior on the recovered function.

Definition 20 (Quadratic regularizer). For t > 0, one defines

F q
t = argmin

g∈Rn

||f − g||2 + t||G̃g||2 where G̃ = GD−1/2.

This optimization replaces f ∈ `2(V) by F q
t ∈ `2(V) with small gradients. This optimization

can be found in closed form by inverting a sparse linear system.

Theorem 15 (Solution of quadratic regularization). F q
t is unique and

F q
t = (Idn + tL̃)−1f.

130 CHAPTER 8. LINEAR MESH PROCESSING

Over the Fourier domain, this inversion reads

F̂ q
t (ω) =

1
1 + tλω

f̂(ω).

This corresponds to an attenuation of the high frequency content of f , in a way very similar to
equation (8.10).

Once again, similarly to the heat equation, the spectral expression of the quadratic regularizer
allows to study its convergence for large t.

Theorem 16 (Convergence of quadratic regularization). If M is connected,

F q
t
t→+∞−→ 1

n

∑
i∈V

fi.

8.3.6 Application to Mesh Compression
We have shown how the Fourier basis on meshes can be used to compute in a diagonal fashion

filtering, heat diffusion and quadratic regularization. This Fourier transform is however of little
interest in practice, since the original filterings (or finite difference approximation of the heat equa-
tion) are usually faster to compute directly than over the Fourier domain. The Fourier transform
is thus mainly of theoretical interest in these cases since it allows to prove convergence results.

Another class of applications makes use of an orthogonal expansion such as the Fourier one to
perform mesh compression. This section shows how to compute a linear M -term approximation
in this Fourier basis and to do mesh compression. We refer to the survey [1] for more advanced
non-linear mesh compression methods.

The orthogonal basis U = (uω)ω of `2(V) ' Rn, where L̃ = UΛUT allows to define a linear
approximation as followed.

Definition 21 (Linear M -term approximation). For any M > 0, the linear M -term approximation
of f is

f =
n∑
ω=1

〈f, uω〉uω
M-term approx.

=⇒ fM
def.=

M∑
ω=1

〈f, uω〉uω.

The quality of the approximation is measured using the error decay, which can in turn be
estimated using the removed coefficients

E(M) def.= ||f − fM ||2 =
∑
ω>M

|〈f, uω〉|2.

A good orthogonal basis U is a basis for which E(M) decays fast on the signals of interest. Equiv-
alently, a fast decay of E with M corresponds to a fast decay of |〈f, uω〉| for large ω. Figure 8.8
shows the decay of the Fourier spectrum for two different functions defined on a 3D mesh. The
smooth function (left in the figure) exhibits a fast decay of its spectrum, meaning that it can be
well approximated with only a few Fourier coefficients.

We recall that the Fourier atoms

∀ω ∈ Z, uω(x) =
1√
2π
eıωx

are the eigenvectors of the compact, symmetric, semi-definite negative operator f 7→ f ′′ (that
should be defined on the Hilbert space of twice Sobolev derivable functions). This set of function
is also an Hilbert basis of the space L2(R/(2πZ)) of 2π-periodic square integrable functions and a
Fourier coefficient is f̂(ω) def.= 〈f, uω〉.

Approximation theory studies this linear error decay for classical functional spaces. One can
for instance study the Fourier expansion over euclidean spaces.

Theorem 17 (Fourier in 1D). If f is Cα regular on R/(2πZ),

|f̂(ω)| 6 ||f (α)||∞|ω|−α.

8.3. DIFFUSION AND REGULARIZATION ON SURFACES 131

Laplace Spectrum

34

ω

f̂(ω)

f̂(ω) f̂(ω)

f̂(ω)

ω ω

ω

Laplace Spectrum

34

ω

f̂(ω)

f̂(ω) f̂(ω)

f̂(ω)

ω ω

ω

Figure 8.8: Examples of Fourier spectrum for a smooth and a non-smooth function.

This result can be proven with a simple integration by parts. A slightly more difficult result
shows that the linear approximation error decays like M−α.

Theorem 18 (Fourier approximation). If f is Cα on R/(2πZ), then it exist C > 0 such that∑
ω

|ω|2α|〈f, uω〉|2 < +∞ =⇒ E(M) 6 CM−α.

This kind of results can be extended to continuous surfaces thanks to the continuous Laplacian.
We suppose that M is a surface parameterized by φ, and a function f = φ ◦ f̄ is defined on it.
By definition, this function f is Cα if f̄ is Cα in euclidean space. For a compact surface M, the
Laplace-Beltrami operator ∆M is symmetric (for the inner product on the surface), is negative
semi-definite and has a discrete spectrum ∆Muω = −λωuω for ω ∈ N. The functions {uω}ω are
an orthogonal basis for function of finite energy on the surface L2(M). The inner product of an
arbitrary smooth function f ∈ Cα(M) can be bounded using integration by parts

〈f, uω〉 =
1
λkω
〈∆k

Mf, uω〉 =⇒ |〈f, uω〉| 6
||f ||Cα

λ
α/2
ω

.

This proves the efficiency of the Fourier basis on surfaces to approximate smooth functions.
When computing the M -term approximation fM of f one removes the small amplitude Fourier

coefficients of the orthogonal expansion of f . Figure 8.9 shows some examples of mesh approxima-
tion where one retains an increasing number of Fourier coefficients. Mesh compression is only a
step further, since one also need to code the remaining coefficients. This requires first quantifying
the coefficients up to some finite precision and then binary code these coefficients into a file.

8.3.7 Application to Mesh Parameterization
This section is restricted to the study of meshes that can be globally parameterized on a plane.

It means that they are topologically equivalent to a 2D disk. More complex meshes should be first
segmented in cells that are equivalent to a disk.

A parameterization of a continuous surface M is a bĳection

ψ : M−→ D ⊂ R2.

A similar definition applies to a discrete mesh where one computes a 2D position ψ(i) for all the
vertices i ∈ V and then interpolates linearly the mapping to the whole piecewise linear geometric
mesh. This section explains the basics of linear methods for mesh parameterization. We refer to
various surveys [15, 29] for more details on mesh parameterization.

Usually, a 2D mesh is computed from range scanning or artistic modeling, so it does not
come with such a parameterization. In order to perform texture mapping or more general mesh
deformations, it is however important to use such a parameterization. Since many bĳections are

132 CHAPTER 8. LINEAR MESH PROCESSING

1% 2% 3% 4% 5%

1% 2% 3% 4%

Figure 8.9: Examples of spectral mesh compression.

possible to layout the mesh in 2D, the mapping ψ has to satisfy additional smoothness assumptions.
Classically, one requires that each coordinate of ψ has a vanishing Laplacian (it is thus harmonic)
outside a set of constrained vertices that enforce boundary conditions.

More precisely, ψ = (ψ1, ψ2) is the solution of{
∀ i /∈ ∂M, (Lψ1)(i) = (Lψ2)(i) = 0
∀ i ∈ ∂M, ψ(i) = ψ0(i) ∈ ∂D,

where ∂M is the boundary of the mesh, which consists in vertices whose face ring is not homeo-
morphic to a disk but rather to a half disk. This formulation requires the solution of two sparse
linear systems (one for each coordinate of ψ).

The boundary condition ψ0(i) for i ∈ ∂M describes a 1D piecewise linear curve in the plane,
that is fixed by the user. In the following, we will see that this curve should be convex for the
parameterization to be bĳective.

Remark 5. For such an harmonic parameterization, each point is the average of its neighbors
since

∀ i, ψ(i) =
1∑
j wij

∑
(i,j)∈E

wi,jψ(j).

The powerful feature of this linear parameterization method is that it can be proven to produce
a valid (bĳective) parameterization as long as the constrained position (boundary values of ψ) are
along a convex curve.

Theorem 19 (Tutte theorem). If ∀ (i, j) ∈ E, wij > 0, and if ∂D is a convex curve, then ψ is a
bĳection.

Figure 8.10 shows several examples of parameterizations. One is free to use any laplacian
(combinatorial, distance or conformal) as long as it produces positive weights. There is a issue
with the conformal weights, which can be negative if the mesh contains obtuse triangles. In practice
however it leads to the best results. The efficiency of a parameterization can be measured by some
amount of distortion induced by the planar mapping. Linear methods cannot hope to cope with
large isoperimetric distortions (for instance large extrusions in the mesh) since harmonicity leads
to clustering of vertices.

8.3. DIFFUSION AND REGULARIZATION ON SURFACES 133

C
om

bi
na

to
ri

al
C

on
fo

rm
al

C
on

fo
rm

al

Mesh Circle Square Triangle

Figure 8.10: Examples of mesh parameterizations.

8.3.8 Application to Mesh Flattening
One of the difficulty with linear parameterization methods is that they require to set up the

positions of the vertices along the boundary of the mesh. In order to let the boundary free to evolve
and find some optimal shape, one can replace the fixed point constraint by a global constraints of
unit variance as follow

min
ψ1,ψ2∈Rn

||G̃ψ1||2 + ||G̃ψ2||2 with

 ||ψi|| = 1,
〈ψ1, ψ2〉 = 0,
〈ψi, 1〉 = 0.

This optimization problem also has a simple global solution using eigenvectors of the Laplacian.

Theorem 20 (Mesh flattening solution). The mesh flattening solution is given by

Span(ψ1, ψ2) = Span(u1, u2) where L̃ = UΛUT.

In order to compute this flattening, one thus needs to extract 2 eigenvectors from a sparse
matrix. Note however that, in contrast to linear parameterization schemes, this flattening is not
ensured to be bĳective. Figure 8.11 shows that for meshes with large distortion, this flattening
indeed leads to wrong parameterizations.

134 CHAPTER 8. LINEAR MESH PROCESSING

Mesh Combinatorial Conformal Isomap

Figure 8.11: Examples of mesh flattening.

Chapter 9

Multiresolution Mesh Processing

This chapter shows how computations on a mesh can be performed in a multiscale manner,
by considering meshes of increasing resolutions. This leads to the notion of subdivision surfaces
and wavelet transform, which are two different tools to interpolates and decompose functions on
meshes. Both methods rely on a special kind of meshes whose triangulations can be obtained by
applying a regular refinement rule.

9.1 Semi-regular Meshes

9.1.1 Nested Multiscale Grids.
In order to perform multiscale mesh processing, one needs to pack the vertices V of a topological

mesh M = (V,E, F) in sets of increasing resolution. As explained in section 8.1.2, it is important to
remember that this construction is purely combinatorial, in that no geometrical information (such
as actual positions of the vertices in R3) is required to build the set of multi-resolution meshes.
In fact these multiscale grids can be used to actually process the geometrical realization M of the
mesh M as three real valued functions (the three coordinates of the points).

We thus consider a set of nested indexes

V0 ⊂ V−1 ⊂ . . . ⊂ VL = V

which are split according to
Vj = Vj+1 ∪Hj+1.

Next section describes how to actually compute this set of nested grids using a triangular split,
but most of the mathematical tools are in fact valid for arbitrary set of indices, as long as they are
embedded in one each other through scales.

For mesh processing, an index ` ∈ Vj corresponds to a vertex x` ∈ V ⊂ R3. The signals
to be processed are vectors f ∈ Rn of size n = |VL| defined on the grid VL. We sometimes write
f ∈ `2(VL) instead of f ∈ Rn to emphasis the domain on which f is indexed. This chapter describes
transforms for signals f ∈ `2(VL) sampled on the finest grid VL.Regular 1:4 Subdivision

4

48 CHAPTER 3. MULTIRESOLUTION MESH PROCESSING

j = 0 j = −1 j = −2 j = −3

Figure 3.1: Regular subdivision 1:4 of a single triangle. Regular subdivision of a planar triangu-
lation M0.

Each edge is subdivided into two finer edges

∀ e = (a, b) ∈ Ej , σ1(e) = (a, γ(e)) and σ2(e) = (b, γ(e)).

The subdivided set of edges is then

Ej−1 = {σi(e) \ i = 1, 2 and e ∈ Ej} .

Each face f = (a, b, c) ∈ Fj is subdivided into four faces
{

µ1(f) = (a, γ(a, b), γ(a, c)), µ2(f) = (b, γ(b, a), γ(b, c)),
µ3(f) = (c, γ(c, a), γ(c, b)), µ4(f) = (γ(a, b), γ(b, c), γ(c, a)).

The subdivided set of faces is then

Fj−1 = {µi(f) \ i = 1, 2, 3, 4 and f ∈ Fj} .

Figure 3.1 shows an example of recursive splitting of a triangle and a coarse triangulation. Figure
3.2 shows examples of semi-regular triangulation using a geometric realization (position of the
vertices) to create a 3D surface.

The set of vertices can be classified as
Regular vertices are those who belong

neither to the coarse mesh V0 nor to a boundary of a mesh Mj . These vertices have always 6
neighbors.
Extraordinary vertices are the initial vertices of V0. They exhibit arbitrary connectivity.
Boundary vertices are those belonging to a mesh boundary. Boundary vertices not in V0

always have 4 immediate neighbors.
Obviously not every meshes can be obtained from such a subdivision process. In practice, an
arbitrary mesh, obtained from CAD design or range scanning usually does not have any multiscale
structure. It is thus necessary to remesh it in order to modify the connectivity of the mesh. During
this process, the position of the vertices in R3 is modified in order for the geometrical realization
to stay close from the original piecewise linear surface. One can see [2] fur a survey of various
semi-regular remeshing methods.

3.2 Subdivision Surfaces

Subdivision schemes allows to compute a set of progressively refined vectors on a semi-regular
mesh. More precisely, from an initial vector f0 ∈ R|V0| defined on the coarse mesh M0, local

Vj −→ Vj−1 = Vj ∪ {γ(e) \ e ∈ Ej} .
Ej −→ Ej−1 = {σi(e) \ i = 1, 2 and e ∈ Ej} .
Fj −→ Fj−1 = {µi(f) \ i = 1, 2, 3, 4 and f ∈ Fj} .

e
σ1(e)

σ2(e)

γ(e) µ1(f)

µ2(f)µ3(f)

µ4(f)f
subdivision subdivision

Figure 9.1: Edge-splitting subdivision.

135

136 CHAPTER 9. MULTIRESOLUTION MESH PROCESSING

9.1.2 Semi-regular Triangulation.
The combinatorial structure of a triangular mesh is defined in section 8.1.2. This chapter

considers only a certain class of meshes M = (V,E, F) that can be obtained by a regular split of
faces, starting from an initial coarse triangulation. This splitting leads to a set of multiresolution
meshes Mj = (Vj , Ej , Fj) for J 6 j 6 0, where the full mesh is MJ = M .

j = 0 j = −1 j = −2 j = −3

Figure 9.2: Regular subdivision 1:4 of a single triangle. Regular subdivision of a planar triangu-
lation M0.

Starting from this coarse triangulation, one defines by subdivision a multiscale triangulation
(Vj , Ej , Fj)L6j60 where

For each edge e ∈ Ej , a central index γ(e) ∈ Vj−1 is added to the vertices

Vj−1 = Vj ∪ {γ(e) \ e ∈ Ej} .

Each edge is subdivided into two finer edges

∀ e = (a, b) ∈ Ej , σ1(e) = (a, γ(e)) and σ2(e) = (b, γ(e)).

The subdivided set of edges is then

Ej−1 = {σi(e) \ i = 1, 2 and e ∈ Ej} .

Each face f = (a, b, c) ∈ Fj is subdivided into four faces{
µ1(f) = (a, γ(a, b), γ(a, c)), µ2(f) = (b, γ(b, a), γ(b, c)),
µ3(f) = (c, γ(c, a), γ(c, b)), µ4(f) = (γ(a, b), γ(b, c), γ(c, a)).

The subdivided set of faces is then

Fj−1 = {µi(f) \ i = 1, 2, 3, 4 and f ∈ Fj} .

Figure 9.1 shows the notations related to the subdivision process. Figure 9.2 shows an example
of recursive splitting of a triangle and a coarse triangulation. Figure 9.3 shows examples of semi-
regular triangulation using a geometric realization (position of the vertices) to create a 3D surface.

The set of vertices can be classified as
Regular vertices are those who belong neither to the coarse mesh V0 nor to a boundary of a
mesh Mj . These vertices have always 6 neighbors.
Extraordinary vertices are the initial vertices of V0. They exhibit arbitrary connectivity.
Boundary vertices are those belonging to a mesh boundary. Boundary vertices not in V0

always have 4 immediate neighbors.

9.1. SEMI-REGULAR MESHES 137

j = 0 j = −1 j = −2 j = −3

Figure 9.3: Examples of semi-regular meshes (Vj)j for increasing scale j (from left to right).

Obviously not every meshes can be obtained from such a subdivision process. In practice, an
arbitrary mesh, obtained from CAD design or range scanning usually does not have any multiscale
structure. It is thus necessary to remesh it in order to modify the connectivity of the mesh. During
this process, the position of the vertices in R3 is modified in order for the geometrical realization
to stay close from the original piecewise linear surface. One can see [2] fur a survey of various
semi-regular remeshing methods.

9.1.3 Spherical Geometry Images

Starting from some input surfaces S ⊂ R3, one typically wants to compute a semi-regular
meshes (Mj)j>L that approximate S. In most case, the surface S is actually given as an arbitrary
triangulated mesh and this process corresponds to a semi-regular remeshing. Many algorithm have
been devised for surface remeshing and we describe here a method [24] that works for surfaces
that have the topology of a sphere. It means that the surface has genus 0, without boundary and
without handles.

This methods works by computing several intermediate surface-wise parameterization.
Spherical parameterization: each points of the original triangulation of S is mapped onto the
unit sphere. This create a bĳective parameterization

φS : S2 → S.

This is a non-linear process that differ from the planar parameterization introduced in section
8.3.7. We do not give the details of such a process, but it requires minimizing the smoothness of
the mapping φ−1

S under the constraint that it maps points of S to unit length vectors (point on
the sphere S2). The algorithm is explained in details in [24].
Spherical-tetraedron flattening: one flatten each quadrant (1/8) of the sphere in order to have a
mapping

φT : Octaedron → S2.

One can use for instance a mapping between spherical barycentric coordinate on each quadrant
and Euclidean barycentric coordinates on each face of the octahedron.

138 CHAPTER 9. MULTIRESOLUTION MESH PROCESSING

Tetraedron unfolding: One maps each equilateral face of the octaedron on a rectangular triangle
that corresponds to 1/8th of the square [0, 1]2

φU : [0, 1]2 → Octaedron.

Regular sampling: the geometry image is obtained by regularly sampling the square on a uniform
grid

x` = φS ◦ φT ◦ φU (`/n) for `i = 0, . . . , n− 1.

The mapping ` 7→ x` ∈ R3 is the geometry image, which can be stored as a 3-channel (color) image.
From such a geometry image x`, one can easily compute a semi-regular mesh by simply per-

forming a regular 1:4 subdivision of the octaedron. Figure 9.4 shows the steps of the construction
of a geometry image, and the resulting semi-regular mesh.

Spherical Geometry Images

6

!

!"#$%&'()*+(%(,$-%&.(-&/0*(01*2$,$3#&04*

!"#$%&'()*% +),)-.%+/00-%
1*#2-'.#34%/5%13(6% 7#8'/./53%9-.-('86%

! ! ! !
"#$%$&'(!!!!!!)*+,#$-'(!*'#'.,/#$0'/$"&! "-/'+,1#'(!*'#'.,/#$0'/$"&! %,".,/#2!$.'%,!3($/4! #,.,)+,1!%,".,/#2!!!

5$%6#,!78!9,."&)/#'/$"&!":!)*+,#$-'(!*'#'.,/#$0'/$"&!'&1!)6;),<6,&/!#,)'.*($&%!$&/"!'!%,".,/#2!$.'%,=!

"#$%&'(%!
>,-,&/(2?!@6!,/!'(=!ABCCBD!$&/#"16-,1!)*+,*%&-!.,')*$?!$&!E+$-+!
%,".,/#2! $)! #,)'.*(,1! $&/"! '! -".*(,/,(2!
#,%6('#!B9!%#$1=!F+,!*#"-,))!$&G"(G,)!-6//$&%!
/+,!)6#:'-,!$&/"!'!1$)H!6)$&%!'!&,/E"#H!":!-6/!
*'/+)?!'&1!/+,&!.'**$&%!/+,!;"6&1'#2!":!/+$)!
1$)H! /"! '!)<6'#,=! ! I"/+! %,".,/#2! '&1! "/+,#!
)$%&'()! '#,!)/"#,1! ')! B9! %#$1)?! E$/+! %#$1!
)'.*(,)!$&!$.*($-$/!-"##,)*"&1,&-,?!";G$'/$&%!
/+,! &,,1! /"!)/"#,! '! *'#'.,/#$0'/$"&=! ! J()"?! /+,! ;"6&1'#2! *'K
#'.,/#$0'/$"&!.'H,)!;"/+!%,".,/#2!'&1!/,L/6#,)!),'.(,))=!

F+,! /#'1$/$"&'(! '**#"'-+! :"#! *'#'.,/#0&%! '!)6#:'-,! $&G"(G,)!
-6//$&%! $/! $&/"! -+'#/)! '&1!.'**$&%! /+,),!*$,-,E$),!"&/"! '! *('&'#!
1".'$&=!!M,!$&/#"16-,!'!#";6)/!/,-+&$<6,!:"#!1$#,-/(2!*'#'.,/#$0K
$&%! '! %,&6)K0,#"!)6#:'-,! "&/"! '!)*+,#$-'(! 1".'$&=! ! J! H,2!
$&%#,1$,&/! :"#! .'H$&%!)6-+! '! *'#'.,/#$0'/$"&! *#'-/$-'(! $)! /+,!
.$&$.$0'/$"&! ":! '!)/#,/-+K;'),1! .,')6#,?! /"! #,16-,!)-'(,K
1$)/"#/$"&!'&1!/+,#,;2!*#,G,&/!6&1,#)'.*($&%=!!N6#!),-"&1!-"&/#$K
;6/$"&! $)! '!)-+,.,! :"#!)'.*($&%! /+,!)*+,#$-'(! 1".'$&! 6)$&%!
6&$:"#.(2!)6;1$G$1,1! *"(2+,1#'(! 1".'$&)?! &'.,(2! /+,! /,/#'+,K
1#"&?!"-/'+,1#"&?!'&1!-6;,=!!M,!)+"E!/+'/!/+,),!*'#/$-6('#!),.$K
#,%6('#!)'.*($&%)!-'&!;,!-"&G,&$,&/(2!#,*#,),&/,1!')!-".*(,/,(2!
#,%6('#!B9!%#$1)?! $=,=!%,".,/#2! $.'%,)=! !O"#,"G,#?! /+,),! $.'%,)!
+'G,!)$.*(,! ;"6&1'#2! ,L/,&)$"&! #6(,)! /+'/! '$1!.'&2! *#"-,))$&%!
"*,#'/$"&)=! ! J**($-'/$"&)! $&-(61,! %,".,/#2! #,.,)+$&%?! (,G,(K":K
1,/'$(?!."#*+$&%?!-".*#,))$"&?!'&1!).""/+!)6#:'-,!)6;1G)$"&=!

P&! '((! /+#,,! '**#"'-+,)?! /+,!)6#:'-,! $)! :$#)/! -6/! $&/"! "&,! "#!."#,!
1$)HK($H,!-+'#/)!6)$&%!'!&,/E"#H!":!-6/!*'/+)?!'&1!'!*'#'.,/#$0'K
/$"&!$)!:"#.,1!*$,-,E$),!"&!,'-+!-+'#/=!!F+,!!!"#$%#$!-"&)/#6-/$"&!
":!/+,!-+'#/!;"6&1'#$,)!"#!-6/!*'/+)!$)!+,6#$)/$-?!'&1!-"&)/#'$&)!/+,!
<6'($/2!":! /+,!'//'$&';(,!*'#'.,/#$0'/$"&=! ! P&! /,L/6#,!'/('),)?!;"/+!
/+,!&6.;,#!":!-+'#/)!'&1!/+,$#!)6#:'-,!,L/,&/)!'#,!),(,-/,1!+,6#$)K
/$-'((2! /"! .$&$.$0,! *'#'.,/#$-! 1$)/"#/$"&! "&/"! *('&'#! *"(2%"&)?!
E+$(,!'()"!.'$&/'$&$&%!%""1!*'-H$&%!,::$-$,&-2=!!P&!),.$K#,%6('#!
#,.,)+$&%?!)6#:'-,!-+'#/)!'#,!),(,-/,1!/"!+'G,!("EK1$)/"#/$"&!.'*)!
"&/"! #,%6('#! 1".'$&! :'-,)?! '&1! /"! +'G,! '**#"L$.'/,(2! /+,!)'.,!
)$0,=!!5$&'((2?!$&!%,".,/#2!$.'%,)?!/+,!)6#:'-,!$)!+,6#$)/$-'((2!-6/!
$&/"!'!1$)H!/+'/!+"*,:6((2!.'*)!E,((!"&/"!'!)<6'#,=!

/*-0+&1$8!!/,L/6#,!.'**$&%?!#,.,)+$&%?!%,".,/#2!$.'%,)?!.,)+,)=!

56* 70-%/18'-&/0*

23&4'(*! 5'&',*%&.6'%.+7=! ! F"! '))"-$'/,! '! %$
*('&'#!1".'$&?!/+,!/#'1$/$"&'(!'**#"'-+!$)!/"!
'#/$/$"&! /+,!)6#:'-,! $&/"!-+'#/)?!'#'.,/#$0,!
/+,),! $&! /+,! *('&,?! '&1! *'-H! /+,.! $&/"! '!
%*8%3&*! '%9'$?! ')!)+"E&! $&! /+,! ,L'.*(,! "&!
/+,!#$%+/!A,=%=!!O'$(("/!,/!'(=!7QQRS!T$%&"&$!,/!

! ' =!
)!$)!/+,!

*#,),&-,!":!G$)$;(,!),'.)!"&!/+,!)6#:'-,=!!U+,:
/#2!/"!+$1,!/+,),!),'.)!$&!+$%+K-6#G'/6#,!#,%$"&)=

J&!'(/,#&'/$G,!$)!$*,.:&*)39'&!&*,*$;

G,&!)6#:'-,!E$/+! '!

:,#!'&1!V'#/!ABCCBD!

.7)!E+,#,;2!

U"#H$&,!,/!'(=!A D!/'H,!/+,!$&/,#,)/$&%!'**#"'-+!":!*'#'.,/#$0K
$&%! '! -+'#/! 16#$&%! $/)! $&-#,.,&/'(! %#"E/+?! /"! ;"6&1! 1$)/"#/$"&=!!
F+6)?!/+,!-#,'/$"&!":!-6/!*'/+)!$)!%6$1,1!;2!/+,!*'#'.,/#$0'/$"&=!

BCCB

'(=! 7QQWS! U'&1,#! ,/ (=! BCC7S! XYG2! ,/! '(
BCCBD=!!N&,!.'$&!1 'E;'-H!":!'&!'/(' P&!/+$)!*'*,#?!E,!-"&)/#6-/!:"#!'!-".."&!-('))!":!."1,()!'!-"&K

/$&6"6)?!6&-"&)/#'$&,1!*'#'.,/#$0'/$"&!E$/+"6/!'&2!-6//$&%=!
!

25;*&.('9! 5'&',*%&.6'%.+7=! ! @,".,/#$-! ."1,()! '#,! ":/,&! 1,K
)-#$;,1!;2!-("),1?!%,&6)K0,#"!)6#:'-,)?!$=,=!1,:"#.,1!)*+,#,)=!!5"#!
)6-+! ."1,()?! /+,!)*+,#,! $)! /+,! .")/! &'/6#'(! *'#'.,/#$0'/$"&!
1".'$&?!)$&-,!$/!1",)!&"/!#,<6$#,!-6//$&%!/+,!)6#:'-,!$&/"!1$)H3)4=!!
V,&-,!/+,!*'#'.,/#$0'/$"&!*#"-,))!;,-".,)!6&-"&)/#'$&,1=!!ZG,&!
/+"6%+!E,!.'2!)6;),<6,&/(2! #,)'.*(,! /+,!)6#:'-,!)$%&'(! "&/"! '!
*$,-,E$),! -"&/$&6"6)! 1".'$&?! /+,),! 1".'$&! ;"6&1'#$,)! -'&! ;,!
1,/,#.$&,1!."#,!-"&G,&$,&/(2!'&1!!&"%'()#$%#$!"&!/+,!)*+,#,=!

/+,!-"&&,-/G/2!":!/+,!)6#:'-,!-+'#/)!$)!6),1!/"!:"#.!
'!1".'$&!-".*(,L!/+'/!$)!/+,&!#,%6('#(2!)6;1G1,1!
A,=%=!Z-H!,/!'(=!7QQ[S!X,,!,/!'(=!7QQWS!\";;,(/!,/!'(=!
7QQQ B !B

C " ,!1".'$&
!$/),(:!$)!$##,%6('#?!'**(2$&%!'!/,L/6#,!$.'%,!

/"!/+,!)6#:'-,!#,<6$#,)!)/"#$&%!'!*'#'.,/#$0'/$"&=!!

S!@6)H"G!,/!'(=! CCC!S!X,,!,/!'(= CCCS!M""1!,/!
'(=! B CCD=! !I,-'6),! /+,!- &&,-/G/2!":! /+ !
-".*(,L

M+$(,! *('&'#! *'#'.,/#$0'/$"&! ":! .,)+! -+'#/)! +')! ;,,&!)/61$,1!
,L/,&)$G,(2?!/+,#,!$)!#,('/$G,(2!(,))!E"#H!"&!*'#'.,/#0&%!'!.,)+!
')!'!E+"(,!"&/"!'!)*+,#$-'(!1".'$&?!')!#,G$,E,1!$&!U,-/$"&!R=7=!!

U*+,#$-'(!*'#'.,/#$0'/$"&!*#"G,)!/"!;,!-+'((,&%$&%!$&!*#'-/$-,?!:"#!
/E"!#,')"&)=!!5$#)/?!:"#!/+,!'(%"#$/+.!/"!;,!#";6)/!$/!.6)/!*#,G,&/!
'#'.,/#$-!]:"(1"G,#)^!'&1!/+6)!%6'#'&/,,!'!7K/"K7!)+,#$-'(!.'*=!!
U,-"&1?! E+$(,! '((! %,&6)K0,#"!)6#:'-,)! '#,! $&! ,)),&-,!)*+,#,K
)+'*,1?!)".,!-'&!;,!+$%+(2!1,:"#.,1?!'&1!-#,'/$&%!'!*'#'.,/#$0'K
/$"&!/+'/!'1,<6'/,(2!)'.*(,)!'((!)6#:'-,!#,%$"&)!$)!1$::$-6(/=!

!

x!

ϕUϕT
ϕS

Surface S ⊂ R3.
Spherical parameterization: ϕS : S2 → S.
Spherical-tetraedron flattening: ϕT : Tetrahedron → S2.
Tetraedron unfolding: ϕU : [0, 1]2 → Tetrahedron.
Regular sampling: x! = ϕS ◦ ϕT ◦ ϕU ("/n) for "i = 0, . . . , n− 1.

[Praun & Hoppe 2003]

Spherical Geometry Images: ϕ = ϕS ◦ ϕT ◦ ϕU : [0, 1]2 → S.

Geometry Image ⇐⇒ 3-channels image, special boundary conditions.

Figure 9.4: Spherical geometry image construction, taken from [24].

9.2 Subdivision Curves
Before getting into the detail of subdivision surfaces, we describe the subdivision process in the

simpler setting of 1D signals. This leads to the construction of subdivision of 1D functions and
subdivision curves.

In this 1D setting, the grid point indexes are dyadic sub-grids of Z

∀ j > L, Vj =
{
`2j−L \ 0 6 ` < s02−j

}
,

where s0 = |V0| is the size of the initial vector f0 to be subdivided.1D Function Refinement

8

h0

h1h̃−1

h̃1h̃0
Vj

Hj
Vj−1

[1, 1]/2
[1, 1]/2 [1, 6, 1]/8 [1, 4, 6, 4, 1]/8

1 [1, 2, 1]/4
gh h̃

Linear
Cubic

fj ∈ !2(Vj) −→
{
∀ k ∈ Hj , fj−1(k) =

∑
t fj((k − 1)/2 + t)h(t),

∀ ! ∈ Vj , fj−1(!) =
∑

t fj(! + t)h̃(t).

f−1 f−2 f−5f0

Figure 9.5: 1D subdivision scheme with filters h and h̃. The red curve represent the original signal
f0.

Each subdivision steps computes, from a set fj(`) ∈ `2(Vj) of coarse values, a refined vector
fj−1 ∈ `2(Vj−1) defined by{

∀ k ∈ Hj , fj−1(k) =
∑
t fj((k − 1)/2 + t)h(t),

∀ ` ∈ Vj , fj−1(`) =
∑
t fj(`+ t)h̃(t).

where the set of weights h and h̃ acts as local averaging operators. This averaging should be
corrected at the boundary, and we use here cyclic boundary conditions which identifies 0 and
s02−j in Vj . Figure 9.5 shows a graphical display of these averaging operators.

9.3. SUBDIVISION SURFACES 139

One can write this subdivision steps as convolution by introducing the global set of weights

g = [. . . , h̃(−1), h(0), h̃(0), h(1), h̃(1), . . .]

since one has

fj−1 = (fj ↑ 2) ∗ g where a ↑ 2 = [. . . , 0, a(−1), 0, a(0), 0, a(1), 0, . . .].

This corresponds to the traditional description of the wavelet low-pass filtering [20].

Figure 9.6: 1D subdivision of a signal. Bottom row shows the subdivision from an impulse signal,
converging to the scaling function φ.

Figure 9.6 shows several steps of subdivision, starting from an initial vector of size |V0| = 10.
One can apply this subdivision of functions to a pair of signals

(X0, Y0) : V0 → R2

which is a control polygon composed of points located in the plane. The subdivision curve converges
to the limiting curve

(Xj , Yj)
j→−∞−→ (X(t), Y (t))1t=0 ⊂ R2.

An interesting property is that this curve is included in the convex hull of the control polygon

(X(t), Y (t))t ⊂ Conv(X0, Y0).

Figure 9.7 shows examples of subdivision curves.

9.3 Subdivision Surfaces
Subdivision schemes allows to compute a set of progressively refined vectors on a semi-regular

mesh. More precisely, from an initial vector f0 ∈ R|V0| defined on the coarse mesh M0, local
interpolation kernels computes iteratively vectors fj ∈ R|Vj | of finer resolution. When applied to 3
function (f i0)i=1,2,3 defining the geometrical position of points in R3, this hierarchical construction
defines a subdivision surface. These subdivisions surfaces are used extensively in computer aided
geometry and computer graphics. One can see [9] for a survey of subdivision surfaces and their
applications.

140 CHAPTER 9. MULTIRESOLUTION MESH PROCESSING

Figure 9.7: Two examples of subdivision curves. The red curve represent the original curve
(X0, Y 0).

9.3.1 Interpolation Operators
In order to refine a vector fj ∈ R|Vj | defined on the vertex Vj of the mesh Mj , one uses two

interpolators
Pj : `2(Vj) −→ `2(Hj) and P̃j : `2(Vj) −→ `2(Vj). (9.1)

A new refined function fj−1 ∈ R|Vj−1| defined on the vertices Vj−1 = Vj ∪Hj of Mj−1 is defined
by applying these two refinement operators:

∀ ` ∈ Vj−1, fj−1(`) =
{

(Pjfj)(`) if ` ∈ Vj ,
(P̃jfj)(`) if ` ∈ Hj .

Since Vj ⊂ Vj−1, the operator P̃j only modify slightly the value at vertex in Vj . On the other hand,
the operator Pj creates new value at the vertices of Hj that are inserted between Vj and Vj−1.

In practical applications, these interpolating operators are local, meaning that the value of
(Pjfj)(`) and (P̃jfj)(`) depends only on values fj(`′) for `′ ∈ Vj being close to ` ∈ Vj−1, typically
in the 1-ring or 2-ring vertex neighborhood.

A particularly important setting for subdivision scheme is when one apply the subdivision steps
in parallel to three vectors (Xj , Yj , Zj) starting from three initial vectors describing the position
in 3D space of a coarse mesh M0. This allows to defines finer and finer spacial localization for the
vertex of the refined meshes Mj . Figure 9.9 shows an example of such a subdivision surface. In
order for the resulting infinitely refined surface to have good properties such as being continuous
and even smooth, one needs to design carefully the interpolation operators. Next section gives
examples of such operators.

9.3.2 Some Classical Subdivision Stencils
In order to define the interpolation operators Pj and P̃j of equation (9.1), one needs to use a

naming convention for the neighborhoods of vertices.
For a vertex ` ∈ Vj , the one ring neighborhood V` has already been defined in equation (8.1).

It is the set of vertices adjacent to `. In a regular point (that does not belongs to V0 and not on
a boundary of the mesh), its size is |V`| = 6 since a point has 6 neighbors. This 1-ring is used to
define P̃j .

For a vertex k ∈ Hj ⊂ Vj−1, the butterfly neighborhood is a set of vertices in Vj close to k.
This neighborhood is used to define Pj . The two immediate neighbors are

(v1
k, v

2
k)

def.= {v ∈ Vj \ (v, k) ∈ Ej−1} .

9.3. SUBDIVISION SURFACES 141

Two other vertices (w1
k, w

2
k) are defined using the two faces adjacent to edge (v2

k, v
2
k) ∈ Ej

f1
k = (v1

k, v
2
k, w

1
k) ∈ Fj and f2

k = (v1
k, v

2
k, w

2
k) ∈ Fj .

For edges Ej on the boundary of Mj , one one face is available, in which case we implicitly assume
that f1 = f2 (reflecting boundary conditions). The four last vertices are defined using faces adjacent
to f1 and f2:

∀ i, j = 1, 2, f i,jk
def.= (zi,jk , vjk, w

j
k) ∈ Fj with f i,jk 6= fj .

Once again, reflecting boundary condition are applied for faces on the boundary of the mesh. The
butterfly neighborhood is depicted on figure 9.8.

k
v1

k v2

k

f2

k

f1

k

w1

k

w2

k

z
1,1

k

f
1,1

k

f
1,2

k
f
2,2

k

f
2,1

k

z
1,2

k
z
2,2

k

z
2,1

k

Figure 9.8: The butterfly neighborhood of a vertex k ∈ Hj.

Linear Interpolating Scheme The simplest subdivision rule compute values along edge mide
point using a simple linear interpolation as follow{

∀ k ∈ Hj , (Pjfj)(k) = 1
2 (f(v1

k) + f(v2
k)),

∀ ` ∈ Vj , (P̃jfj)(`) = fj(`).
(9.2)

Since P̃j is the identity operator, this scheme is called interpolating. It means that value of f0 on
points of the coarse triangulation are kept during iteration of the subdivision.

Butterfly Interpolating Scheme The linear scheme creates function that are piecewise linear
on each face of the coarse triangulation F0. In order to create smooth surface, one needs to use
more points in the butterfly neighborhood as follow{

∀ k ∈ Hj , (Pjfj)(k) = 1
2

∑2
i=1 f(vik) + 1

8

∑2
i=1 f(wik)− 1

16

∑2
i,j=1 f(zi,jk),

∀ ` ∈ Vj , (P̃jfj)(`) = fj(`).
(9.3)

Loop Approximating Scheme In order to gain flexibility in the subdivision design, one can
also modify points in Vj during the iterations. This means that P̃j is not any more the identity,
and that all the values will evolves during the iterations. The question of wether these iterated
modification actually converge to a limit value is studied in the next section.

The Loop subdivision rule is defined as{
∀ k ∈ Hj , (Pjfj)(k) = 3

8

∑2
i=1 f(vik) + 1

8

∑2
i=1 f(wik),

∀ ` ∈ Vj , (P̃jfj)(`) = (1− |V`|β|V`|)fj(`) + β|V`|
∑
`′∈V`

fj(`′).

142 CHAPTER 9. MULTIRESOLUTION MESH PROCESSING

Figure 9.9: Examples of iterative subdivision using Loop scheme. The points (X0, Y0, Z0) of the
initial coarse mesh M0 are shown in red.

Original Linear Butterfly Loop

Figure 9.10: Examples of subdivision schemes. The points (X0, Y0, Z0) of the initial coarse mesh
M0 are shown in red. Since the linear and butterfly scheme are interpolating, these points actually
belongs to the limiting surface.

where the weights depends on the number of neighbors and are defined as

βm
def.=

1
m

(
5
8
−
(

3
8

+
1
4

cos(2π/m)
)2
)
.

Other schemes. It is possible to define subdivision schemes using rules that do not involve a
regular 1:4 splitting of each coarse face. For instance, in dual schemes such as the one depicted in
figure 9.11, the faces of Fj are not included in Fj−1 but only in Fj−2.

9.3.3 Invariant Neighborhoods
In order to study the convergence of subdivision schemes, one needs to consider independently

each vertex x ∈ Vj0(x), where j0(x) is the coarser scale at which x appears

j0(x) = max {j \ x ∈ Vj} .

Original vertices satisfy j0(x) = 0 and are the only one (except boundary vertices) that have a
non-regular connectivity.

The vertex x belongs to the mesh Mj0(x) which is going to be refined through scales j < j0(x).
In order to analyze this refinement, one needs to define an invariant neighborhood V xj ⊂ Vj of x for
each scale j 6 j0(x). These neighborhood are the set of points that are required to compute the

9.3. SUBDIVISION SURFACES 143

Figure 9.11: Surface after 0, 1 and 3 step of
√

3 subdivision [18].

operators Pj and P̃j . More precisely, given a vector f ∈ `2(Vj−1), the neighborhoods are required
to satisfy {

∀ ` ∈ V xj−1 ∩ Vj , (P̃jf)(`) depends only on V xj
∀ k ∈ V xj−1 ∩Hj , (Pjf)(k) depends only on V xj .

We further impose that all the invariant neighborhoods have the same size

∀ j 6 j0(x), #V xj = mx.

Figure 9.12 shows an example of invariant neighborhood which corresponds to the 2-ring V (2)
` , as

defined in (8.2).
Thanks to the invariance of these neighborhood systems, one can restrict the predictors around

x and define
P xj : V xj −→ V xj−1 ∩ Vj and P̃ xj : V xj −→ V xj−1 ∩Hj .

The subdivision matrix Sxj ∈ Rmx×mx is then defined as matrix of the following mapping

(P̃ xj , P
x
j) : V jx −→ V j−1

x .

All the subdivision schemes studied in this chapter are invariant, meaning that the subdivision
rule does not change through the scales j. This impose that the subdivision matrices are constant
Sxj = Sx. In fact, in all the examples given in the previous section, they only depends on the
number |Vx| of neighbors in the one ring of x.

9.3.4 Convergence of Subdivisions
The value at x ∈ Vj0(x) of a function fj ∈ `2(Vj) obtained by subdividing at scale j 6 j0(x) an

initial vector f0 ∈ `2(V0) can be computed as

fj(x) =
(
Sxfxj+1

)
(x) =

(
(Sx)j0(x)−jfxj0(x)

)
(x),

where the vector fxi ∈ Rmx is the restriction of fi to the set V xj .
In order to analyze the limiting function resulting from an infinite number of subdivision, one

can use the eigen vector decomposition of the matrix Sx

Sx = Φ̃V ΛΦT where
{

ΦT = Φ̃−1,
Λ = diag(λi), λ1 6 λ2 6 . . . 6 λmx .

Since the subdivision matrix Sx is not symmetric, some of the eigenvalues might be complex,
and we shall ignore this difficulty here. The fact that Pj and P̃j are predictor implies that the

144 CHAPTER 9. MULTIRESOLUTION MESH PROCESSING

1

23

4

5

6

7

8

9

0

1

0

2

3

7

4

8

5

9

6

Figure 9.12: Invariant neighborhood V xj and V xj−1 (indexing with red circles) of the Loop subdivision
scheme for a vertex of valence |V`| = 0. The number in {0, . . . , 9} refers to the numbering of the
vertices in V xj and V xj−1

subdivision matrix has to satisfy Sx1 = 1, meaning that φ̃1 = 1 is an eigenvector associated to the
eigenvalue 1. In the following we further makes the following assumption

1 = λ1 < λ
def.= λ2 = λ3 < λ4. (9.4)

This hypothesis is satisfied by all the subdivision rules introduced in the previous section.
If one write Φ = (φi)mi=1 and Φ = (φi)mi=1, one has the following decomposition of a vector

f ∈ Rmx

f =
mx∑
i=1

〈f, φi〉φ̃i and (Sx)k(x) =
mx∑
i=1

λki 〈f, φi〉φ̃i.

One thus has the following asymptotic expansion

1
λk

(f − 〈f, φ1〉1) = 〈f, φ2〉φ̃2 + 〈f, φ3〉φ̃3 + o(1). (9.5)

This expression describes the asymptotic behavior of the subdivision scheme at zero order (position)
and first order (tangents).

Theorem 21 (Convergence of the subdivision scheme). If the subdivision matrix Sx of a point x
satisfies (9.4) then the subdivision process converges at x to the value

f j(x)
j→−∞−→ 〈fxj0(x), φ1〉.

The smoothness of the resulting function is more difficult to analyze. A particularly important
setting is when one computes the subdivision of 3 function p0 = (X0, Y0, Z0) ∈ `2(V0)3 correspond-
ing to the position in R3 (geometrical realization) of a coarse mesh M0. In this case, the subdivided
functions pj = (Xj , Yj , Zj) gives refined 3D meshes that converge uniforlmy to a continuous surfaces

p(x) = (X(x), Y (x), Z(x)) = (〈Xx
j0 , φ1〉, 〈Y xj0 , φ1〉, 〈Zxj0 , φ1〉).

Condition (9.4) nearly implies that the resulting surface is smooth. Indeed, the asymptotic expan-
sion (9.5) shows that for a point x′ near x in the subdivision domain, the differential vector can
be well approximated as a projection on a 2D plane

p(x)− p(x′) + o(1) ∈ Span(τx2 , τ
x
3) where τ i(x) def.= (〈Xx

j0 , φi〉, 〈Y
x
j0 , φi〉, 〈Z

x
j0 , φi〉).

If the vectors τx2 and τx3 are linearly independent, they form a basis of the tangent plane at p(x).

9.4. WAVELETS ON MESHES 145

Example of the Loop subdivision. For the Loop interpolation operators defined in equation
(9.3.2), the invariant neighborhood V xj correspond to the 2-ring of x in the triangulation Gj ,
as shown in figure 9.12. For a vertex with k neighbors, |Vx| = k, the size of these invariant
neighborhood is mx = 3k + 1. A particular neighboring for k = 3 is depicted in figure 9.12,
together with an indexing in {0, . . . , 3k = 9} of the points in V xj and V xj−1. For this indexing, the
subdivision matrix reads 

7 3 3 3
1 1 1 1 10 1 1
1 1 1 1 1 10 1
1 1 1 1 1 1 10
1 1 3 3
1 1 3 3
1 1 3 3
1 3 1 1
1 1 3 1
1 2 1 3


where the 0’s have been omitted and where the rows should be rescaled to sum to 1. The eigenvalues
of this matrix satisfy λ1 = 1 and λ2 = λ3 = 1/3 > λ4.

9.4 Wavelets on Meshes

9.4.1 Multiscale Biorthogonal Bases on Meshes
The transforms considered in this section are multiscale and indexed by the set of nested grids

(Vj)L<j6J . This corresponds to computing a set of coefficients (dj)L<j6J ∪fJ from an initial input
signal f . These coefficients corresponds to inner products with basis vectors{

dj ∈ `2(Hj) where ∀ k ∈ Hj , dj(k) = 〈f, ψj,k〉,
fJ ∈ `2(VJ) where ∀ ` ∈ VJ , fJ(`) = 〈f, φJ,`〉.

By analogy with the wavelet setting, the vectors ψj,k ∈ Rn corresponds to primal wavelets and
are intended to capture the details present in the signal f at a scale j, whereas the scaling vectors
φJ,k ∈ Rn capture the missing coarse approximation of f at scale J . This decomposition is stopped
at any coarse scale L < J 6 0.

In order to reconstruct the function f from this set of transformed coefficients, one needs to
use a set of bi-orthogonal basis vectors

f =
∑

L<j6J,k∈Hj

dj(k)ψ̃j,k +
∑
`∈VJ

fJ(`)φ̃J,`.

If this reconstruction formula holds for any scale L < J 6 0, the set of vectors

(ψj,k, φj,`)
L<j60
k∈Hj ,`∈Vj

and (ψ̃j,k, φ̃j,`)
L<j60
k∈Hj ,`∈Vj

, (9.6)

is said to be a pair of primal and dual multiscale bases (together with their scaling functions).
The following paragraph shows how one can modify such a pair of multiscale bases while still

maintaining the biorthogonality property. This lifting process is useful to design multiscale bases
with various properties on complicated domains.

9.4.2 The Lifting Scheme
The lifting scheme is a construction of multiscale biorthogonal bases introduced by Sweldens

[31, 32]. It extends the traditional construction of wavelets in two main directions:
As explained in [12], it allows to implement already existing filter banks more efficiency by
splitting the computation into elementary blocks. This computational gain is described at the
end of the section together with the factorization of wavelets into lifting steps.

146 CHAPTER 9. MULTIRESOLUTION MESH PROCESSING

It allows to define multiscale transforms over domains that are not translation invariant. This
section gives two examples of such transforms: a non-separable 2D wavelet transform and wavelets
on triangulated meshes.

In order to build wavelets on triangulation, one can specialize the lifting scheme to a particular
setting where only two lifting steps are applied.

Forward lifting scheme. The forward algorithm performs the transform

(fj−1(`))`∈Vj−1 −→ (dj(k))k∈Hj ∪ (fj(`))`∈Vj

by applying the following steps
Splitting: this corresponds selecting the coefficient of fj−1(`) that are in Vj or in Hj

(fj−1(`))`∈Vj−1 = (fj(`))`∈Vj
∪ (fj(`))`∈Hj

.

These two sets of coefficients are treated differently in the two remaining steps of the transform.
Predict step: creates wavelets coefficients dj by computing local differences between each coeffi-
cient in Vj and its neighbors in Hj

∀ k ∈ Hj , dj(k) = fj−1(k)−
∑
`∈Vj

pj(k, `)fj−1(`).

The coefficients pj(k, `) are weights that determine the predict operator

Pj :
{
`2(Vj) −→ `2(Hj)
g 7−→ h = Pjg

where h(k) =
∑
k∈Hj

pj(k, `)g(`).

Update step: enhance the properties of each remaining low pass coefficients fj−1(`) for ` ∈ Vj by
pooling locally the wavelets coefficients dj(k) for k around `

∀ ` ∈ Vj , fj(`) = fj−1(`) +
∑
k∈Hj

uj(`, k)dj(k).

The coefficients uj(`, k) are weights that determine the update operator

Uj :
{
`2(Hj) −→ `2(Vj)
h 7−→ g = Ujh

where g(`) =
∑
k∈Hj

uj(`, k)h(k).

Figure 9.13, top row, shows the block diagram associated to this forward lifting wavelet transform.
The iterations of the forward lifting transform can also be written in vector and operator format{

dj = f
Hj

j−1 − Pjf
Vj

j−1,

fj = f
Vj

j−1 + Ujdj = (IdVj − UjPj)f
Vj

j−1 + Ujf
Hj

j−1,

where gA is the restriction of some vector g to the set A.

Backward lifting scheme. The backward transform algorithm does the reverse computation

(dj(k))k∈Hj
∪ (fj(`))`∈Vj

−→ (fj−1(`))`∈Vj−1

One of the main feature of the lifting scheme is that this is achieved by simply reversing the order
of the lifting steps and interchanging +/- signs.

Inverse update step:

∀ ` ∈ Vj , fj−1(`) = fj(`)−
∑
k∈Hj

uj(`, k)dj(k).

9.4. WAVELETS ON MESHES 147Lifting Scheme

19

split Pj Uj
fj−1

Vj

Vj−1

Hj −

+ fj

dj

. . .

fj

dj

Vj

Hj

Uj

−

Pj

+

merge
fj−1

Vj−1 . . .

. . .

. . .

{
Predict : Pj : !2(Vj) −→ !2(Hj)
Update : Uj : !2(Hj) −→ !2(Vj)

Figure 9.13: Block diagrams for the forward and backward lifting scheme.

Inverse predict step:

∀ k ∈ Hj , fj−1(k) = dj(k) +
∑
`∈Vj

pj(k, `)fj−1(`).

Merging: makes the union of the coefficients computed in the two previous steps

(fj−1(`))`∈Vj−1 = (fj(`))`∈Vj ∪ (fj(`))`∈Hj .

Figure 9.13, top row, shows the block diagram associated to this backward lifting wavelet transform.
The lifting scheme is more general than the algorithm described in this section since several

passes of predict/update steps can be applied to further enhance the properties of the resulting
transform. However, the steps beyond the two initial ones are difficult to analyze, except in the
notable exception of points sampled evenly on a 1D axes, where a factorization algorithm [12]
allows to recover traditional wavelet filters.

9.4.3 Imposing vanishing moments.

The operator Pj is called a predictor since the values of Pjf
Vj

j−1 should typically be close to
f
Hj

j−1 for the wavelet coefficients dj to be small. Such predictors have already been constructed in
equations (9.2), (9.3) and (9.3.2).

The operator Uj is called an update operator since the additional term Ujdj should enhance
the properties of fVj

j−1. This update steps does not appears in the theory of subdivision surface and
this section considers a local update operator which guaranty the conservation of the mean value
when switching from fj−1 to fj .

Polynomial vectors. In order to select predict and update operator that have good properties,
one follow the insight gained from the analysis of the wavelet approximation of signal on the real
line. In order to do so, one need analyze the effect of a lifting wavelet transform on polynomials.
The most basic constraint enforces one vanishing moment by imposing orthogonality with the
constant vector Φ0 = 1. This constraint does not require to known the spacial location x` of each
index ` ∈ VL. In order to impose higher order vanishing moments, one needs to assume some
sampling pattern, for instance

∀ ` ∈ VL, f(`) = f̄(x`) where x` ∈ Rq

and where f̄ is a function defined on Rq. For instance, the points x` might corresponds to a regular
sampling of the line (this is the traditional wavelet setting) or to an irregular sampling of a 2D

148 CHAPTER 9. MULTIRESOLUTION MESH PROCESSING

surface embedded in R3. The next paragraphs describe several situations with different sampling
grids. Once the precise locations of the samples are known, one can for instance select Φs as some
monomials of degree (s1, . . . , sq) over Rq.

Vanishing moment and polynomials reproduction. Having defined these polynomial vec-
tors, one requires that the following constraints are fulfilled.

Vanishing moments: the wavelet coefficients of a low order polynomial should be 0, which implies
that

∀ k ∈ Hj , 〈Φs, ψj,`〉 = 0. (9.7)

Polynomial reproduction: coarse coefficients fj computed from a polynomial ff−1 should also be
polynomials, which implies that

∀ ` ∈ Vj , 〈Φs, φj,`〉 = Φs(`) (9.8)

In order for the wavelets and scaling function to satisfy conditions (9.7) and (9.8), the predict
operator Pj and update operator Uj should be designed carefully. One can impose these constraint
from the fine scale j = L until the coarse scale j = 0. Indeed, if (φj−1,`, ψj−1,`)k,` satisfy conditions
(9.7) and (9.8), then, for the scale j

∀ s ∈ S,

{
(9.7) ⇐⇒ PjΦ

Vj
s = ΦHj

s ,

(9.8) ⇐⇒ Uj
T
(
ΦVj
s + Pj

TΦHj
s

)
= ΦHj

s .

where ΦAs ∈ `2(A) is the restriction of Φs to A.
In contrast, the constraint (9.8) on the update operator Pj is more involved and the next section

shows how to handle it on a triangulation situations for only one vanishing moment |S| = 1.

9.4.4 Lifted Wavelets on Meshes
The lifted wavelet bases can be used to process signals f ∈ `2(VL) where ` ∈ VL index a sampling

x` of an arbitrary surface. The construction of biorthogonal wavelets on triangulated mesh has
been first proposed by Lounsbery et al. [19] and re-casted into the lifting scheme framework by
Schroeder and Sweldens [26, 27].

Designing predict operators. The constraints (9.7) on the predictor Pj is easily solved. For
instance, for each k, one selects only |S| non vanishing weights (pj(k, `))` and solves a small |S|×|S|
linear system. Furthermore, in the case of a regular triangulation with edges of constant length,
predictors with several vanishing moments have been already defined in (9.2), (9.3) and (9.3.2).
Figure 9.14 shows the weights for these predictors.

3.3. WAVELETS ON MESHES 57

3.3.3 Lifted Wavelets on Meshes

The lifted wavelet bases can be used to process signals f ∈ !2(VL) where ! ∈ VL index a sampling
x! of an arbitrary surface. The construction of biorthogonal wavelets on triangulated mesh has
been first proposed by Lounsbery et al. [23] and re-casted into the lifting scheme framework by
Schroeder and Sweldens [31, 32].

In order to define a wavelet transform on a semi-regular grid, one needs to define predictors
and update operators. The predictors have already been introduced in equations (3.2), (3.3) and
(3.2.2). One can choose any of these operators, and creates respectively linear, butterfly and Loop
wavelets bases. All these predictors have one vanishing moment since they satisfy Pj1Hj = 1Vj .

In order to ensure that the dual wavelets have one vanishing moment, the update operator
depends on the direct neighbors in Hj of each point in Vj

∀ ! ∈ Vj , V! = {γ(!, !′) \ (!, !′) ∈ Ej} .

One wants looks for a valid update operator in the following form

∀h ∈ !2(Hj), ∀ ! ∈ Vj , (Ujh)[!] = λ!

∑

k∈V!

h[k], (3.12)

where each λ! should be fixed in order for condition (3.11) to be satisfied.
In an semi-regular triangulation, |V!| = 6 except maybe for some points in the coarse grid

! ∈ V0. In this setting, the values of λ! can be computed by a recursion through the scales. In
an ideal triangulation where |V!| = 6 for all !, one can use a constant weight λ! = λ. For the
special case of the butterfly wavelets, Pj

T1Hj = 3× 1Vj and Uj
T1Vj = 6λ1Hj , so setting λ! = 1/24

solves equation (3.11). Figure 3.8 shows examples of butterfly wavelets on a planar semi-regular
triangulation.

j = −2 j = −3 j = −4

Figure 3.8: Example of wavelets ψj,k on a semi-regular triangulation. The height over the triangle
(together with the color) indicates the value of the wavelet vector.

3.3.4 Non-linear Mesh Compression

These wavelets can be used to perform an approximation of a function f ∈ !2(VL) defined on
the fine triangulation. For instance a wavelet approximation can be applied to each coordinate
fi, i = 1, 2, 3 of the actual position x! = (f1[!], f2[!], f3[!]) ∈ R3 of the surface points, as done
in [15, 17]. This leads to a scheme to approximate and compress a 3D surface using the lifted
biorthogonal wavelets associated to the semi-regular triangulation. This is possible because these
wavelets depend only on the combinatorial grids Vj and not on the precise position of the samples
x! in 3D.

In order to perform a wavelet approximation in this biorthogonal basis, one uses a non-linear
thresholding at T > 0

f =
∑

(j,k)∈IT

〈f, ψj,k〉ψ̃j,k

where IT =
{

(j, k) \ k ∈ Hj and |〈f, ψj,k〉| > T | supp(ψj,k)|−1/2
}

.

Examples of Update Operators

22

∀h ∈ !2(Hj), ∀ ! ∈ Vj , (Ujh)[!] = λ!(h[v1
k] + h[v2

k]),
Update operators:

On a regular triangulation: |V!| = 6, λ! = λ.

Pj
T1Hj = 3× 1Vj , Uj

T1Vj = 6λ1Hj =⇒ λ = 1/24.

Pj1 = 1.1/2 1/2 1/2 1/2

−1/16 −1/16

−1/16−1/16

3/8 3/8

1/8

1/8

Linear Loop Butterfly

ψ̃−1,k ψ̃−2,k ψ̃−3,k

Figure 9.14: Predict operators on a triangulation.

One can choose any of these operators, and creates respectively linear, butterfly and Loop
wavelets bases. All these predictors have one vanishing moment since they satisfy Pj1Hj = 1Vj . In
fact they have more vanishing moments if one consider polynomials Φs sampled at points x` ∈ R2 of
an hexagonal tiling with constant edge length. In practice, if the triangulation under consideration
have edges with smoothly varying length, the resulting predictor are efficient to predict the value
of smooth functions on the triangulation.

9.4. WAVELETS ON MESHES 149

Designing update operators. In order to ensure the reproduction of constant polynomials, we
design the update operator so that it depends only on the direct neighbors in Hj of each point in
Vj

∀ ` ∈ Vj , V` = {γ(`, `′) \ (`, `′) ∈ Ej} .

One then looks for a valid update operator in the following form

∀h ∈ `2(Hj), ∀ ` ∈ Vj , (Ujh)(`) = λ`
∑
k∈V`

h(k), (9.9)

where each λ` should be fixed in order for condition (9.8) to be satisfied.
In an semi-regular triangulation, |V`| = 6 excepted maybe for some points in the coarse grid

` ∈ V0. In this setting, the values of λ` can be computed by a recursion through the scales. In an
ideal triangulation where |V`| = 6 for all `, one can use a constant weight λ` = λ.

For the predictors defined in (9.2), (9.3) and (9.3.2), one has

Pj
T1Hj = 3× 1Vj and Uj

T1Vj = 6λ1Hj

so setting λ` = 1/24 solves equation (9.8). Figure 9.15 shows examples of butterfly wavelets on a
planar semi-regular triangulation.

j = −2 j = −3 j = −4

Figure 9.15: Example of wavelets ψj,k on a semi-regular triangulation. The height over the triangle
(together with the color) indicates the value of the wavelet vector.

9.4.5 Non-linear Mesh Compression
These wavelets can be used to perform an approximation of a function f ∈ `2(VL) defined on

the fine triangulation. For instance a wavelet approximation can be applied to each coordinate
fi, i = 1, 2, 3 of the actual position x` = (f1(`), f2(`), f3(`)) ∈ R3 of the surface points, as done
in [16, 17]. This leads to a scheme to approximate and compress a 3D surface using the lifted
biorthogonal wavelets associated to the semi-regular triangulation. This is possible because these
wavelets depend only on the combinatorial grids Vj and not on the precise position of the samples
x` in 3D.

In order to perform a wavelet approximation in this biorthogonal basis, one uses a non-linear
thresholding at T > 0

f =
∑

(j,k)∈IT

〈f, ψj,k〉ψ̃j,k

where IT =
{

(j, k) \ k ∈ Hj and |〈f, ψj,k〉| > T | supp(ψj,k)|−1/2
}
.

Note that for each coefficient the threshold T is scaled according to the size of the support of the
wavelet in order to approximately normalize the wavelets in `2(VL) norm.

Figure 9.16 shows an example of compression of the position of a vertex in 3D spaces as 3
functions defined on a semi-regular mesh. Figure 9.17 shows an example of compression of a
spherical texture map which is a single function defined at each vertex of a semi-regular mesh
obtained by subdividing an icosaedron.

150 CHAPTER 9. MULTIRESOLUTION MESH PROCESSING

100% 10% 5% 2%

Figure 9.16: Non-linear wavelet mesh compression with a decreasing number of coefficients.

100% 10% 5% 2%

Figure 9.17: Non-linear spherical wavelet compression with a decreasing number of coefficients.

Bibliography

[1] P. Alliez and C. Gotsman. Recent advances in compression of 3d meshes. In N. A. Dodgson,
M. S. Floater, and M. A. Sabin, editors, Advances in multiresolution for geometric modelling,
pages 3–26. Springer Verlag, 2005.

[2] P. Alliez, G. Ucelli, C. Gotsman, and M. Attene. Recent advances in remeshing of surfaces.
In AIM@SHAPE repport. 2005.

[3] E. Candès and D. Donoho. New tight frames of curvelets and optimal representations of
objects with piecewise C2 singularities. Commun. on Pure and Appl. Math., 57(2):219–266,
2004.

[4] E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying. Fast discrete curvelet transforms.
SIAM Multiscale Modeling and Simulation, 5:861–899, 2005.

[5] A. Chambolle. An algorithm for total variation minimization and applications. J. Math.
Imaging Vis., 20:89–97, 2004.

[6] S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit. SIAM
Journal on Scientific Computing, 20(1):33–61, 1999.

[7] F. R. K. Chung. Spectral graph theory. Regional Conference Series in Mathematics, American
Mathematical Society, 92:1–212, 1997.

[8] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting.
SIAM Multiscale Modeling and Simulation, 4(4), 2005.

[9] P. Schroeder et al. D. Zorin. Subdivision surfaces in character animation. In Course notes at
SIGGRAPH 2000, July 2000.

[10] I. Daubechies. Ten Lectures on Wavelets. SIAM, Philadelphia, PA, 1992.

[11] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint. Commun. on Pure and Appl. Math., 57:1413–1541, 2004.

[12] I. Daubechies and W. Sweldens. Factoring wavelet transforms into lifting steps. J. Fourier
Anal. Appl., 4(3):245–267, 1998.

[13] D. Donoho and I. Johnstone. Ideal spatial adaptation via wavelet shrinkage. Biometrika,
81:425–455, Dec 1994.

[14] M. Figueiredo and R. Nowak. An EM Algorithm for Wavelet-Based Image Restoration. IEEE
Trans. Image Proc., 12(8):906–916, 2003.

[15] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. In N. A.
Dodgson, M. S. Floater, and M. A. Sabin, editors, Advances in multiresolution for geometric
modelling, pages 157–186. Springer Verlag, 2005.

[16] I. Guskov, W. Sweldens, and P. Schröder. Multiresolution signal processing for meshes. In
Alyn Rockwood, editor, Proceedings of the Conference on Computer Graphics (Siggraph99),
pages 325–334. ACM Press, August8–13 1999.

151

152 BIBLIOGRAPHY

[17] A. Khodakovsky, P. Schröder, and W. Sweldens. Progressive geometry compression. In Pro-
ceedings of the Computer Graphics Conference 2000 (SIGGRAPH-00), pages 271–278, New
York, July 23–28 2000. ACMPress.

[18] L. Kobbelt.
√

3 subdivision. In Sheila Hoffmeyer, editor, Proc. of SIGGRAPH’00, pages
103–112, New York, July 23–28 2000. ACMPress.

[19] M. Lounsbery, T. D. DeRose, and J. Warren. Multiresolution analysis for surfaces of arbitrary
topological type. ACM Trans. Graph., 16(1):34–73, 1997.

[20] S. Mallat. A Wavelet Tour of Signal Processing, 3rd edition. Academic Press, San Diego,
2009.

[21] D. Mumford and J. Shah. Optimal approximation by piecewise smooth functions and associ-
ated variational problems. Commun. on Pure and Appl. Math., 42:577–685, 1989.

[22] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1, Ser.
A):127–152, 2005.

[23] J. Portilla, V. Strela, M.J. Wainwright, and Simoncelli E.P. Image denoising using scale
mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Proc., 12(11):1338–1351,
November 2003.

[24] E. Praun and H. Hoppe. Spherical parametrization and remeshing. ACM Transactions on
Graphics, 22(3):340–349, July 2003.

[25] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.
Phys. D, 60(1-4):259–268, 1992.

[26] P. Schröder and W. Sweldens. Spherical Wavelets: Efficiently Representing Functions on the
Sphere. In Proc. of SIGGRAPH 95, pages 161–172, 1995.

[27] P. Schröder and W. Sweldens. Spherical wavelets: Texture processing. In P. Hanrahan and
W. Purgathofer, editors, Rendering Techniques ’95. Springer Verlag, Wien, New York, August
1995.

[28] C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal,
27(3):379–423, 1948.

[29] A. Sheffer, E. Praun, and K. Rose. Mesh parameterization methods and their applications.
Found. Trends. Comput. Graph. Vis., 2(2):105–171, 2006.

[30] G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge Press, Boston,
1996.

[31] W. Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets.
Applied and Computation Harmonic Analysis, 3(2):186–200, 1996.

[32] W. Sweldens. The lifting scheme: A construction of second generation wavelets. SIAM J.
Math. Anal., 29(2):511–546, 1997.

[33] M. Vetterli and J. Kovacevic. Wavelets and Subband Coding. Prentice-Hall, Englewood Cliffs,
NJ, 1995.

